
AD-A252 404 TION PAGE FonnApov.
PUb ,"W ,epor". WcudWN ft W r rft*&* Irructiom "acht *xdml, swxce , 91%ef " a miait ft dia,
needed. I l li i u lI I or &y ofher aed o4 V5 cofiaecrtion o frmaln. of o r , g sUoefor I I tI udI . to Win f
Headquare Davi Highway. SuUe 1204. Aulnkon, VA 22202-4302. nd to he toO of k o mdn and Regla y A . Ofce d
Manageme

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 1992 Technical
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Development Statistics for the UH-1 Ada Feasibility Study

6. AUTHOR(S)

lIT Research Institute
4600 Forbes Blvd.
Lanham, MD 20706
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

lIT Research Institute REPORT NUMBER

4600 Forbes Blvd. N/A
Lanham, MD 20706

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
Ada Joint Program Office -. REPORT NUMBER

OSD(A)ODDDRE(S&T)/AFF - N/A
RM 3E118/Pentagon
Washington, DC 20301-3081 .

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT . 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

3. ABSTRACT (Maximum 200 words)

this document describes data collection and analysis techniques that were applied to an Ada software redevelopment of
the UH-1 Flight Simulate or (FS). It presents results for the following subject areas:

o The Application of function point analysis to estimate trainer size;
o the application of Ada COCOMO, SoftCost Ada, and SASET models to estimate schedule and efforts;
o the application of AdaMAT/D to evaluate trainer quality.

The report also describes results of a project profile study to characterize aspects of the development environment.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada cost models Ada, software redevelopment, function point 78
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-128

DEVELOPMENT STATISTICS FOR THE

UH-1 FS ADA FEASIBILITY STUDY

January 1992

Prepared for:

I A PM TRADE
ATTN: AMCPM-TND-ED

12350 Research Parkway
Orlando, FL 32826-3276

Prepared by:

IIT Research Institute
4600 Forbes Boulevard

Lanham, MD 20706-4324

I
I
I
I

92-17388! ,2

I
I
I
I
I
U

The information and data contained herein have been compiled from government and nongovernment
technical reports and other independent sources and are intended to be used for reference purposes. Neither
the United States Government nor IIT Research Institute warrants the accuracy of this information and data.
The user is further cautioned that the data contained herein my not be used in lieu of other contractually cited
references and specifications.

Publication of this information is not an expression of the opinion of The United States Government or of
lIT Research Institute as to the quality or durability of any product mentioned herein. Any use for advertising
or promotional purposes of this information in conjunction with the name of The United State Government
or ITT Research Institute without written permission is expressly prohibited.

I
I
I
I
I
I
I
I
I

I TABLE OF CONTENTS

SECTION PAGE

1.0 INTRODUCTION .. I
1.1 BACKGROUND .. 1
1.2 O BJECTIVE ... 1
1.3 APPRO ACH ... 1
1.4 REPORT ORGANIZATION ... 2

2.0 SYSTEM OVERVIEW ... 4

3.0 CHARACTERIZING THE DEVELOPMENT ENVIRONMENT AND ITS PRODUCTS 5
3.1 COMPARISON OF SOURCE CODE SIZE 5
3.2 SOURCE CODE ATTRIBUTES .. 6
3.3 USE OF ADA FEATURES .. 7
3.4 PHASE DISTRIBUTION OF EFFORT AND SCHEDULE 8
3.5 PRODUCTIVITY .. 10

4.0 ESTIMATING TRAINER SIZE USING FUNCTION POINT ANALYSIS 11
4.1 PROCEDURE FOR ESTIMATING SIZE USING FUNCTION POINTS 12
4.2 R ESU LTS .. 13

j 5.0 ESTIMATING TRAINER COSTS ... 15

6.0 TRAINER QUALITY EVALUATION ... 17
6.1 ADAMAT/D RESULTS .. 18

6.1.1 Product Overview ... 18
6.1.2 A pproach ... 18
6.1.3 R esults ... 19

6.2 ERROR DENSITY ANALYSIS .. 19

7.0 CONCLUSION ... 23

LIST OF TABLES

TABLE NO. PAGE

3-1 UH-1 FS SOURCE LINES OF CODE SIZE 5
3-2 SOURCE CODE ATTRIBUTES .. 6
3-3 PHASE DISTRIBUTION OF EFFORT (%) 9
3-4 PHASE DISTRIBUTION OF SCHEDULE (%)................................... 9

3-5 UH-1 PRODUCTIVITY ... 10
4-1 UH-1 SIZING HISTORY ... 11
4-2 SUPPORT SOFTWARE NOT INCLUDED IN FUNCTION POINT ESTIMATE 13
4-3 COMPARISON OF FUNCTION POINT ESTIMATE TO ACTUAL SIZE 14
5-1 COSTS FOR SOFTWARE DEVELOPMENT 16
5-2 COSTS FOR SOFTWARE DEVELOPMENT AND SYSTEMS INTEGRATION 16
6-1 ADAMAT/D SCORES BY QUALITY CATEGORY 20

6-2 UH-1 FS ERROR/CHANGE RATE ... 22

I ii

LIST OF FIGURES

FIGURE NO. PAGE3

3-1 Use of Ada Features - Comparison to SEL Data 7
6-1 ADAMATID Results ... 21
6-2 Trouble Report Classification ... 22I
6-3 History of Reported Software Problems ... 22

LIST OF APPENDICESI

SECTION PAGE1

A SOFTWARE PROJECT DATA COLLECTION FORMS FOR THE UH-1 ADA
FEASIBILITY PROJECT ... A-1

B INSTRUCTIONS FOR SOFTWARE PROJECT DATA COLLECTION FORMS B-i1
C STATEMENT PROFILER DEFINITIONS C-1
D DERIVATION OF FUNCTION POINT COUNT FOR THE REAL-TIME CSCI

OF THE UH-I FLIGHT SIMULATOR ... D-1

E DERIVATION OF FUNCTION POINT COUNT FOR THE AUTOMATED
COURSE WARE SYSTEM .. E-l

F RESOURCE ESTIMATION REPORT'S..F-i
G ADAMAT REPORT .. G-1
H REFERENCES ... H-1

LIST OF TERMS AND ABBREVIATIONS

ACS Automated Courseware System
ADADL Ada-based Documentation and Design Language
ADAMAT Ada Measurement and Analysis Tool
CCC Configuration Change and Control
CDR Critical Design Review
COCOMO Constructive Cost Model
CSC Computer Software Component
CSCI Computer Software Configuration Item
DCE Digital Conversion Equipment
DCL Digital Command Language
DOCGEN Documentation Generator
DR Discrepancy Report
EDSI Equivalent Delivered Source Instructions
FPA Function Point Analysis
FOR Final Qualification Review
FS Flight Simulator
GAT Generic Aircrew Trainer
lOS Instructor Operator Station
IR&D Internal Research and Development
KSLOC Thousands of Source Lines of Code
NTSC Naval Training Systems Center
MB MegaBytes
NSIA CWG National Security Industrial Association Computer Working Group
PDL Program Design Language
PDR Preliminary Design Review
PM Person Month
PM TRADE Program Manager for Training Devices
RFP Request for Proposal
SASET Software Architecture Sizing and Estimating Tool
SEL Software Engineering Laboratory
SLOC Source Lines of Code
SRR System Requirements Review
SSR Software Specification Review
STR Software Trouble Report
TESTGEN Test Generator Lhoeas lron Fo
TRR Test Readiness Review I1-S- T

DTC TAB
Just :rctoz_

Distribut ion /
AvallabilityCoe

I iataUt SPeolalado

iv
'I

I
I
U
I
I
I
I

(This Page is Intentionally Left Blank) I
I
I
I
I
I
I
I
I
I
I

1.0 INTRODUCTION

1.1 BACKGROUND

The Army Material Command's Program Manager for Training Devices (PM TRADE) performs the
principal role of acquiring training devices and training aides for the soldier to enhance operational proficiency
and primary skills. The cost effectiveness of current development practices and a comprehensive methodology
to improve the quality of the software in these automated systems have not been assessed or developed. As
part of a tri-service initiative among PM TRADE, Naval Training Systems Center (NTSC), and United States
Air Force Aeronautical Systems Division Deputy for Simulators, PM TRADE is performing research into the
use of the Ada programming language to evaluate its impact in developing flight simulators.

To determine the feasibility of using new technologies for trainers, a baseline must be established
against which the technology effects can be measured. Specific aspects of a software project are quantified
to allow an organization to understand its development characteristics. A baseline is established as data are
collected and projects are measured. Meaningful analyses of the data result in an improvement in an
organization's understanding of the software development process within its environment and provides insight
into parameters of interest such as productivity, maintainability, and cost. Subsequently, improvement in
software development can be effected via the planned application and evaluation of new development
technologies.

In the acquisition of a new system, especially where software is a sizable portion of it, a major problem
of the developing organization is how to identify which software qualities are important, and then how to
specify them in the form of requirements. As the system evolves during development, the need arises to
determine how well those requirements are being satisfied. Each software system is unique in its level of
software quality requirements. There are basic system characteristics which affect the quality requirements,
and each system must be analyzed individually for its fundamental characteristics.

1.2 OBJECTIVE

Our basic goal was to implement an Ada Data Collection and Analysis Program and coordinate the
program with the development contractor to fulfill the goals of defining productivity, cost, and quality metrics
to support future acquisitions. This paper describes our approach to data collection and analysis, and how
techniques were applied to one particular trainer development project, the UH-1 Flight Simulator. The results
of the study should be a greater understanding of the software development process, product improved
simulators, and associated specifications and contracts.

1.3 APPROACH

We chose an approach that combines a practical, proven methodology for measuring software quality
with experiments that are designed to measure differences in Ada programming practices that impact
productivity and software quality. The proven methodology is one that was designed and developed at the
NASAiGoddard Space Flight Center Software Engineering Laboratory (SEL). The SEL was founded in 1976
to carry out studies and measurements related to evolving technologies in the flight dynamics area. In 1985,
the SEL initiated an effort to study the characteristics, applications, and the impacts of Ada. The SEL has
subsequently collected detailed development data from a total of eight Ada projects. The goals of the SEL
are to understand the software development process; measure the effects of various methodologies, tools, and

models on this process; and then to identify and apply successful development practices. So that the expense
of data collection does not get out of hand, their major emphasis is to define measurement goals and let the
goals drive the data that are being collected [1,21.

Data collection and analysis for the UH-1 FS Ada Feasibility Study focused on five measurement I
objectives:

1. Provide a profile to characterize aspects of the development environment. 3
2. Quantify some of the effects of Ada on measures of significant importance such as

productivity, reliability, reuse, and maintainability. 3
3. Determine how the trainer development that is the target of this study compares to

trainer developments in non-Ada languages. 5
4. Determine how to best estimate the cost of trainer software development in Ada.

5. Evaluate the feasibility of using function points to estimate trainer size. 1
The data required to support UH-I measurement objectives were collected by using the following five

methods: 1) completion of a data collection form by the developer, 2) observation of development, 3) code
analysis, 4) interviews with the developer, and 5) review of project software documentation. The data
collection form was maintained throughout the project and updated at major milestone reviews. The
completed form is contained in Appendix A. Instructions for completing the form are in Appendix B. The
form contains information that is not only used to support the project profile study, but it also supports U
application of three cost estimation models.

Software cost estimation models were applied at three different intervals throughout the project in
order to update schedule and effort projections. When model results wcrc reviewed at PDR, there was much
discussion on the estimated size of the program which was believed to be too high. The fifth measurement
objective, evaluating function points as a means to estimate trainer size, was an outgrowth of these discussions. n

An enhanced Intermetrics Statement Profiler is one of the automated tool used for code analysis. By
passing source code through the tool's parser, it will count the usage of various Ada statement types and
special Ada features. The tool currently operates on a VAX system under VMS. The tool makes use of a I
parser that was previously developed by Intermetrics, Inc. for their 'Statement Profiler' tool. The 'Statement
Profiler' is available from the Ada Software Repository. The Intermetrics tool was enhanced to include
additional output counts and user interfaces were changed to make them easier to use. In some cases, some
constructs were not considered in the parser. In these instances, a character string that uniquely identifies the
construct is flagged by the tool and the appropriate counter is incremented.

1.4 REPORT ORGANIZATION U
The following sections describe the studies and experiments that were performed, and data that was

collected to support the analysis. Each major section addresses a separate measurement objective:

Section 3.0 presents the results of a project profile study to characterize aspects of the
development environment.

Section 4.0 describes the application of function point analysis to estimate trainer size.

2

I

Section 5.0 describes the application of Ada COCOMO, SoftCost Ada, and SASET models
to estimate schedule and effort.

Section 6.0 presents the results of the trainer quality evaluation that was based on an
evaluation of software changes and errors and on the application of AdaMAT/D.

When available, results from other measurement programs are presented to provide a basis for comparison.
We were unable to acquire trainer-specific data for a comparative project study. A brief overview of the UH- 1
FS system is presented in Section 2.0. A summary of the lessons learned from the measurement process are
presented in Section 6.0

3

2.0 SYSTEM OVERVIEW 3
The UH-1 FS is a flight simulator for the UH-1H helicopter. It teaches instrument flight maneuvers

and procedures as well as normal and emergency cockpit procedures to Army aviators. The UH-1 FS consists
of four independently operated helicopter cockpits, a central two position instructor console, a digital
computer system and some ancillary equipment. Each cockpit has its own five-degree-of-freedom motion
system and a sound system. 3

The UH-1 Flight Simulators which were designed in the late 1960's had become difficult and expensive
to maintain. The spare memory and spare CPU time had been depleted by software changes. The Army
proposed a product improvement plan to swap-out the aging UH-1 FS computer system to improve its I
capability to be supported and to provide a means to split the 4-cockpit trainer into two 2-cockpit trainers,
if needed.

There are two computer software configuration items (CSCI's); namely, a Real-Time CSCI which I
performs all simulation and processing functions of the UH-1 FS and a Non-Real-Time CSCI which contains
all support, diagnostic, and courseware for the UH-1 FS. The latter encompasses the Ada Programming
Support Environment (APSE), the Automated Courseware System (ACS), any database/support software and I
any commercial software tools.

The Automated Courseware System (ACS) software is the component providing the capability to
develop and modify trainer courseware via the Automated Courseware workstation. The ACS provides for u
the formulation and editing of UH-1 FS mission scenarios consisting of navigational aides, initial operating
conditions, and real-time maps. Courseware data entry tasks are performed on the workstation and are
transferred to the real-time systems (at distributed sites) via a courseware floppy disk.

The development computer system was a 16 MB MicroVAX II operating under a VMS operating
system. Tools which supported the development environment included a TeleSoft Ada compiler, ADADL, I
DOCGEN, TESTGEN, and CCC. A VAX/VMS hosted Ready Systems RTAda cross compiler was used to

generate object code for an MC68030 target system. The target computer system was a network of loosely
coupled MC68030 processors operating as one six node configuration (with a single node allocated to each
of the four cockpits and a single node allocated to each half of the instructor operator station) or as two three-
node configurations when the trainer is split. Each node performs the bulk of the real-time simulation for
the cockpit or Instructor Operator Station (OS) node locally so as to minimize the amount of data passed

between the nodes in real time. n
The ACS system console terminal incorporates a single-board Motorola 68030 series microcomputer

along with Motorola memory and interface boards. 3

4
I

3.0 CHARACTERIZING THE DEVELOPMENT ENVIRONMENT AND ITS PRODUCTS

Analyses of detailed profile information that characterize aspects of the development environment and
the products of that environment are useful to better understand the software development process for an
application domain. Profile studies are not designed to evaluate whether the characteristics are right or wrong
but to report on the method of software development 11]. The following sections describe characteristics of
the UH-1 FS program relating to source code attributes, phase distribution of effort and schedule, and
productivity.

3.1 COMPARISON OF SOURCE CODE SIZE

Table 3-1 contains a comparison of source code size when different counting conventions are used to
provide sizing information. Line counts were obtained by applying an enhanced version of the Intermetrics
Statement Profiler on baseline version 15 of the source code which was the version of software shipped to the
first trainer installation site, one month prior to Governmert Final Inspection. A description of counting
conventions for physical lines, terminal semicolons, body semicolons, and essential semicolons is provided in
Appendix C. The body semicolon count is 60 percent larger than the terminal semicolon count. The large

TABLE 3-1

UH-1 FS SOURCE LINES OF CODE SIZE

Deliverables Language Physical Terminal Body Essential Software
Program Lines Semicolons Semicolons Semicolons Type

lOS CSC Ada 49,809 11,671 15,591 3,546 Application

Trainee Station Ada 49,802 12,489 18,722 7,511 Application
CSC

ACS CSC Ada 24,774 6,523 9,905 1.870 Application

Ada 6,242 1,773 1,859 1,529 Support

Ada 46,305 6,159 25,639 2,709 Application
Common to

ACS, IOS and Ada 387 97 97 67

Trainee Station DCL 613 584 584 N/A Support

Assembly 8,919 6,545 6.545 N/A

DCE Diagnostics Ada 14,962 7,334 7,481 910 Support

Target Computer Ada 7,081 1,061 3,561 113 Support
Diagnostics

Daily Readiness Ada 5,934 1,187 1,253 646 Support

TOTAL 214,828 55,423 91,237 18,901

5

size differential between body semicolons, which include the number of carriage returns in each package 3
specification, and terminal semicolons is attributed to the general packaging framework used on the UH-1
program which resulted in about three package specifications for each body.

The completed project questionnaire in Appendix A shows the categorization of code that are new,

reused/modified, and reused/unmodified for terminal and body semicolon counts.

3.2 SOURCE CODE ATTRIBUTES

Table 3-2 contains a summary of source code attributes. Statement counts were obtained by applying n
an enhanced version of the Intermetrics Statement Profiler. Definitions for Ada statement types are provided
in Appendix C.

TABLE 3-2 I
SOURCE CODE ATITRIBUTES m

Program Units

Number of Objects 3,908 1
Number of Packages 322

Number of Tasks 33 3
Number of Program Units 1,517

Number of Blocks 2 m

Statement Types

Number of Logicals 13,846

Number of Data Manipulations 14.461 3
Number of Ada Tasking 63

Number of Data Typing 2,138

Number of Mathematical 8,733

Number of Declarations 4,041 3
Ada Features Data

Number of Exit Statements 147 3
Number of Use Clauses 1.269

Number of Exceptions 351 3
Number of Generics 16

3
6I

I

3.3 USE OF ADA FEATURES

In an effort to achieve some measurement of the use of the features available in the Ada language,
the SEL identified six Ada features to monitor: generic packages, type declarations, packages, tasks,
compilable PDL, and exception handling [2]. The SEL then examined the code to see how little or how much
of these features were used. The purposes of this analysis were, first, to determine to what degree features
of Ada were used by the Ada project, and second, to determine whether the use of Ada features "matured"
as an environment gained experience with the language. SEL data on the use of Ada features were obtained
using the Ada Static Source Code Analyzer Program developed at the University of Maryland. Analysis of
the use of compilable PDL and exception handling did not show any trends, however, trends were observed
in the use of other features. Figure 3-1 show SEL trends in the use of Ada features over a span of seven
years, beginning with their first Ada project in 1985. A total of eight Ada projects are included in the trend

analysis [3]. Ada features data for the UH-1 FS are included in the trend analysis for comparison.

Strong Typing Generics

71 q
Ua

46 3

S 4 S 2-

3" "3

3 13

1.1 t a -

Sn sa SM 37-U LOW n sn EL" MW SEL WN- WH1 SELV-48 r- S nL~ M041
1._ _ _

TQTAL TtPE aROW PACKAUB COUNTr

ST'A~dd"1 l~YMAL PAaA(ME 10Y COUNr

Package Size Tasking

14.

1.81 5
1,251

C p. 101

I ____0 q
SELW S1EM L 749 SEL II- UN-I MW,*0,1 UK-1 M"L 11C41 E 178SIMU SE. ,e

PEMML LC, M TAL'TAW]L

PAC[A(M

Figure 3-1. Use of Ada Features - Comparison to SEL Data.

* 7

The use of strong typing in these software systems was measured by the number of type and subtype
declarations divided by the number of Ada statement (terminal semicolon count) multiplied by 100 to obtain
a percentage. It is generally believed that the strong typing of Ada will prevent some types of interface errors.
The measure provides a method of observing trends in the use of Ada type declarations. In the flight dynamics
environment, the amount of typing has increased over time. This has been attributed to the developers
becoming more comfortable with the strong typing features of Ada and using its capabilities to a fuller extent
[2,3]. The proportion of type declarations to Ada statements on the UH-1 was 4.42 percent. 3

The generic package is a tool in the Ada language that contributes to software reusability. The SEL
has placed a strong emphasis on the development of reusable components and has seen an increase in the use
of generic packages from the first to the current Ada project. Additionally, the SEL trends reflect an increased I
understanding of how to use generic Ada packages effectively in a flight dynamics environment. It is currently
perceived that the proportion of generic packages to total package body count will level off at about 50 % on
future projects as the SEL reaches the limit at which existing program units can be generalized [2,31. There
were a total of 16 generic packages developed on the UH-I program representing 19 percent of the total I
package body count. The use of generics on the UH-1 project, which was the development team's first Ada
project, was favorably comparable to the trends documented by the SEL. n

The average size of packages was measured by dividing the number of physical Ada lines of code by
the number of packages. The SEL trends show an average size of the packages for the first Ada projects are
much larger than the average size for subsequent Ada projects. The variation is due to a difference in the
structuring method between the first Ada project and all subsequent Ada projects. The first Ada project was
designed using a heavily nested structure with one package at the root of each subsystem and where package
specifications were nested with package bodies. Subsequent projects were designed utilizing the view of
subsystems described by Grady Booch as an abstract design entity whose interface is defined by a number of
separately compilable packages [2,3]. UH-1 FS design methodology is consistent with the latter. The average
size per package on the UH-1 was 630 physical lines.

A comparison of tasking between applications in the flight dynamics environment and the trainer
environment indicate that the tasking feature of Ada is highly application dependent. The use of this Ada
feature at the SEL has declined with each successive Ada project as personnel have learned to use tasking only
in those situations that are appropriate [2,31. A total of 33 Ada tasks were implemented on the UH-1 FS.

3.4 PHASE DISTRIBUTION OF EFFORT AND SCHEDULE 3
Phase distribution of effort entails the allocation of staff throughout the requirements, design,

implementation and testing phases of the development cycle. Using milestone dates to denote the end of one
phase and the beginning of the next, the UH-1 FS project showed nearly 40 percent of the total effort was
expended prior to CDR and approximately 60 percent was expended after CDR. The phase distribution of
effort was contrary to other published data (4J that indicates a shift of effort from the integration and test
phases to design phases. Tables 3-3 and 3-4 illustrates the traditional allocation of time and effort to life-cycle
phases for two Ada-specific models: Ada COCOMO and SoftCost Ada. The 41:59 distribution of effort
before and after CDR for the UH- 1 compares to a 50:50 distribution of effort for SoftCost Ada and a 52:48
distribution of effort for Ada COCOMO. The differences are attributed to four factors:

1. The UH-l is a redevelopment of an existing system whereas effort distributions for the models are
based on new development efforts. It is reasonable to expect less time spent on defining requirements
on a redevelopment effort as compared to a new development. To illustrate, the system requirements
for the UH- 1 were to "replicate current UH-I FS functions and performance unless stated otherwise".
This resulted in less time spent communicating requirements between the developer and the sponsor. I

8

ITABLE 3-3

I PHASE DISTRIBUTION OF EFFORT (%)

SRR - SSR SSR - PDR PDR - CDR CDR - TRR TRR - FQR

ADA N/A 23 29 22 26
COCOMO 50_1535

ISOFTCOST 50 15 35
ADA

UH-1 16 25 59

TABLE 3-4

PHASE DISTRIBUTION OF SCHEDULE (%)

I SRR-SSR SSR - PDR PDR - CDR CDR - TRR TRR - FQR

ADA N/A 39 25 15 21
COCOMO

SOFTCOST 50 15 35
I ADA

UH-l 7 11 23 45 14

1 2. Phase distribution of effort for the UH-1 includes systems integration and testing to obtain a fully
functioning hardware-software system whereas effort distribution for the models does not cover
implementation.

3. The milestone dates were specified in the Request for Proposal (RFP). Further, dates for PDR and
CDR were specified as payment milestones for the developer. In an effort to meet payment,
milestones were scheduled earlier than what may have otherwise been considered optimum. For
example, the developer did not have compilable package specs by PDR which is one of the highlights
of the Ada Process Model, which is the basis of the Ada COCOMO model [4].

4. The developer used a structural model design methodology. A structural model is a domain specific
software architecture. Expectations are that structural model designs are transitional and reusable for
similar types of applications, i.e., flight simulators [5]. The developer utilized the concept of the
structural model in a Generic Aircrew Trainer (IR&D) project. During the development of the Ada
code for the Generic Aircrew Trainer (GAT), various methodology problems were uncovered. Work
on the GAT enabled the developer to iron out specific details of the structural model to be applied

I to the UH-I that would have otherwise been charged to the project.

A comparison of the phase distribution of effort to phase distribution of schedule indicates a
consistent staffing across the project with 41 percent of the time spent prior to CDR and 59 percent of the
time spent after CDR.

I 9

3.5 PRODUCTIVITY 3
Because so many definitions exist for software size measures in Ada, it is important that any

productivity value be qualified by the basis for the measure. We measured productivity on the UH-1 program
using two definitions: 1) terminal semicolons, and 2) body semicolons. We chose the first because sources
show it to be a more widely used definition. However, in the case of the UH-1 FS, productivity measurement
based on terminal semicolons penalize the developer because of the packaging structure which was used. 3

The general packaging framework was that each object in the system consisted of one message (i.e.
package) specification and one body with associated message specs. The message specification defined the
status of the object at any given time and contained only that information which was exported to other
portions of the system. Each object could have as many as four additional message specifications: DCE input
and output specifications that interface with Digital Conversion Equipment handlers/drivers, action request
specification that interface with malfunction control, and a test points specification used to access intermediate
test point variables to allow strip chart recording of variables during flying qualities tests. Since terminal I
semicolons are not used in package specifications, productivity measures that are based on terminal semicolon
count penalize the developer that uses package specifications as the primary means of communication. The
body semicolon count for the UH-1 program was 60 percent larger than the terminal semicolon count
(reference Table 3-1).

With reused software factored in, the productivity for delivered Ada code on the UH-1 FS
redevelopment project is shown in Table 3-5. The productivity was high considering that this was the first Ada
project for the development team. (Only one of the lead designers had worked previously on the GAT.)
Factors that are believed to have influenced productivity are that this effort was a redevelopment as opposed
to a new development and that the structural model design methodology was partially reused from the GAT. I
Section 3.4 discusses these factors in more detail.

TABLE 3-5 3
UH-1 PRODUCTIVITY

Productivity = 200 EDSI / PM Productivity = 316 EDSI / PMiI

EDSI counted in terminal semicolons EDSI counted in body semicolons I
Developed code = new code + 16 percent reused/modified code

Hours per person month = 152 3
Period extends from SRR to FQR (i.e., installation at first trainer site) and includes implementation

I
I
U
I

10 I
I

4.0 ESTIMATING TRAINER SIZE USING FUNCTION POINT ANALYSIS

At a project Lessons Learned briefing held subsequent to PDR, the results of the application of
SoftCost-Ada were presented to project sponsors and the developer. There were three issues raised with
regard to the validity of the estimates. Two addressed the impact of the structural model on productivity and
the existence of analogous data in the SoftCost-Ada database. The third was critical of the size of the project,
which the developer believed to be too high. It was decided to apply additional cost models when schedule
and effort projections were updated at the next milestone and to use function point analysis to estimate trainer
size.

Table 4-1 provides a history of the size estimates that were made at project milestones beginning with
the projection made by the developer in the proposal. Although the UH-1 FS Ada Feasibility Study was a
redevelopment of an existing system, it was impossible to derive an estimate from the existing system because
of an inability to determine what source listings matched the executable software. The software was written
in assembly and, over the years, many modifications were patched onto the system. The estimate at PDR was
provided by PM TRADE based on similar FORTRAN trainer applications. The estimate at CDR was based
on function point analysis and did not include support software. The following points summarize a few
observations relative to the sizing history:

* There is a tendency to underestimate support software. In all cases estimates for the Non-Real-Time
CSCI, which included all trainer support software, were low by a factor of 40% or more.

" Although the CDR estimate for total KSLOCS was very close to the actual terminal semicolon count,
the proposal estimate was the best estimate for individual CSCIs.

" The proposal and PDR estimates support the notion that we tend to estimate in terminal semicolons
as opposed to body semicolons. In all cases, estimates were comparable to the actual size based on
the terminal semicolon counting convention.

I TABLE 4-1

UH-1 SIZING HISTORY

I Real-Time CSCI Non-Real-Time CSCI Total KSLOC

Proposal 31.1 15.6 46.7

PDR Estimate 24.6 7.1 31.7

CDR Estimate 44.7 7.3 + 52.0 +I(Function Points)

Actual (Terminal 30.3 25.1 55.4

Semicolons)

Actual (Body 59.9 31.2 91.2
Semicolons)I

11

4.1 PROCEDURE FOR ESTIMATING SIZE USING FUNCTION POINTS 3
Function point analysis (FPA) measures an application by quantifying the information processing

function associated with five data types: external inputs, external outputs, external inquiries, logical internal
files, and interfaces. Obtaining the trainer size estimate was accomplished in three steps:

1. Compute the unadjusted function point measure by classifying and counting the five data types

2. Adjust for processing complexity (+/- 35%)

3. Apply the language expansion factor. 3
The function point total is a unitless measure of the functionality of the software, independent of lines

of code or implementation language. Several sources have observed a relationship between function point
measures and the SLOC estimate for the implementation language 161. For example, two programs of I
identical function are implemented in two different languages, FORTRAN and Ada. The function point
measure for each program is the same at 100. Using a language expansion factor of 71 for Ada and a factor
of 105 for FORTRAN, the same program implemented in Ada takes 7,100 SLOC and 10,500 lines in
FORTRAN.

Initially, language expansion factors exemplify typical values for an organization based on the
developer's particular dataset. Variations in programming skill, programming style and function point
counting conventions will result in different language expansion factors for the same language. These factors
may require modification after the user has applied the model successively and has evaluated the estimated
versus actual size.

Two function point estimates were derived for the UH-1 FS: one for the real-time trainer application
software and one for the Automated Courseware System (ACS). Support software that was not included in
the function point estimate is listed in Table 4-2. The size of each support software component is provided
in terminal semicolons. Support software consisted of anything having to do with setting up the training
environment. There was some difficulty in determining what software constituted support software. The
definition that was adopted was anything having to do with setting up the environment was considered to be U
support software.

Appendices D and E describe the process to identify function point parameters for the Real-Time
CSCI and ACS, respectively. The appendices illustrate conventions that were adopted for identifying and
counting function point parameters. Interpreting the guidelines 191 to define and count function point
parameters, and extending the guidelines to training devices was not a strait-forward process. The greatest
difficulty was determining how instrument display devices, malfunctions, and various flight controls should be
grouped and counted. Examples of the conventions that were adopted are as follows:

Group switches that work in conjunction with one another and count them as one input. For
example, the UHF Radio Set consists of six control: 1) function selector switch, 2) mode selector
switch, 3) preset channel control, 4) ten megahertz control, 5) one megahertz control, and 6) five
hundredths megahertz control. The UHF Radio Set Controls were grouped and counted as one input
rather than counted as separate inputs.

Group malfunctions according to the object that they affect rather than count each malfunction
separately. Hence, 113 malfunctions were grouped into 17 malfunction groups, i.e., fuel system I
malfunctions, malfunctions affecting VHF navigation, instrument malfunctions, malfunctions affecting
engine lubrication, etc. 1

12

Group instrument display devices according to the type of information that is displayed rather than
count each instrument display device as a separate output. For example, fuel quantity was counted
as one output displayable on four separate indicators: 1) minutes of fuel remaining - digital readout,
2) fuel quantity indicator, 3) auxiliary fuel low caution light, 4) 20 minutes fuel remaining caution
light.

TABLE 4-2

SUPPORT SOFTWARE NOT INCLUDED IN FUNCTION POINT ESTIMATE

Deliverable Description Size
Program

Target Computer Tests main simulation computer equipment or ACS computer 1,061
Diagnostics equipment. Checks computer configuration and its options, all

memory units, peripheral units, and input/output units.

DCE Diagnostics Performs functional checkouts of all trainer interface hardware 7,334
controlled by computer system with test values characteristic of real-
time operation.

PROM Related Assembly software used for booting the system 6,545

Daily Readiness Checks out all trainer equipment to see if trainer is ready for daily 1,187
operation. Determines if all discreet and analog inputs and outputs
are operational.

Disk Partitioning Partitions the disk for real-time and non-real time loads. 97

Courseware Provides for transfer of courseware from the ACS to the Real-Time
Loader CSCI.

Floppy Disk Formats the floppy disk on which courseware files generated by the 1,773

Initialization ACS are loaded.

Command Miscellaneous DCL command procedures. 5.4
Procedures

Total Statements J 18,581

4.2 RESULTS

An Ada language expansion factor of 71 was used estimate size from the function point measure.
Table 4-3 show a comparison of the function point estimate to the actual size. Actual size refers to
application code which was counted using the terminal semicolons counting convention. The function point
estimated sizes were high for both the ACS and the Real-Time CSCI. The estimate for the ACS only had a
relative error of 11 percent as compared to the 32 percent relative error of the Real-Time CSCI. This is
probably due to the fact that function point analysis has historically targeted the ACS type of application, i.e.,
management information systems. A comparison of the actual size of the Real-Time CSCI to the estimated
size shows that an Ada language expansion factor of 48 (i.e., 1 function point = 48 SLOC) would have been
appropriate for this application.

13

TABLE 4-31

COMPARISON OF FUNCTION POINT ESTIMATE TO ACTUAL SIZE

Deliverables Actual Size IFunction Point Relative
Program jEstimated Size j Error

ACS CSC 6,523 7,304 + 11%

Real-Time CSCI 30,319 4,731 + 32%

14I

5.0 ESTIMATING TRAINER COSTS

One of the measurement objectives of the UH-I FS Ada Feasibility Study was to determine how best
to estimate development costs and schedule. There were several factors that would influence the study which
are discussed in Section 3.4, namely,

• The UH-1 is a redevelopment of an existing system.

" The milestone dates were specified in the RFP.

The developer used a structural model design methodology which was developed on a previous IR&D
project and applied to the UH-1.

Although it was not known how much of an influence these factors would have on productivity and schedule,
it was decided to utilize cost models as though the project were a new development.

Three models were applied at CDR, and FQR as follows:

* Ada COCOMO as implemented by COSTMODL (version 5.1)

" SoftCost Ada (version 2.1)

" SASET (Software Architecture Sizing and Estimating Tool - version 1.7)

The SoftCost Ada model was also applied at PDR. These particular models were chosen based on their
availability to project personnel.

Model inputs were provided by the developer in the form of a project questionnaire which was
maintained throughout the project and updated at major milestone reviews. The completed project
questionnaire is provided in Appendix A and identifies the model(s) to which each question applies. The size
data was obtained from baseline version 15 (referred to as the "Cold Start" tape) of the developer's software
which was the version of software shipped to the first training site in Los Alimitos, California. This version
of the trainer was fully tested with the exception of the motion system. The questionnaire provides lines of
code counts using both terminal semicolons and body semicolons counting conventions. The terminal
semicolon count was input to the SoftCost Ada and SASET models. The body semicolon count was used as
input to the Ada COCOMO model.

Tables 5-1 and 5-2 provide a comparison of each model's schedule and effort projections to the actual
project resources expended by the software developer. Table 5-1 shows costs for software development,
excluding implementation. Since there was not a "clean" break between the time that software was completed
and hardware/software integration began (activities were concurrent), the effort and 31 month schedule for
software development is estimated. Table 5-2 includes the implementation phase, therefore, Ada COCOMO
estimates do not apply.

In general, the model projections for effort were much higher than the actual effort expenditure
reported by the developer. It is believed that the factors discussed previously (i.e., redevelopment versus new
development, reused structural model design) had a significant impact on productivity. However, additional
data points would be necdcd to validate this assumption.

SASET allows the user to run the model, optionally specifying the CDR date. The scheduling
algorithms used by the Ada COCOMO and SoftCost Ada models, and SASET - when CDR was specified -

15

TABLE 5-1

COSTS FOR SOFTWARE DEVELOPMENT

EFFORT (PM) SCHEDULE FULL-TIME STAFF
(MONTHS)

ADA COCOMO 308.9 30.5 10

SASET 384 35 10

SASET(CDR 433 38 11
SPECIFIED)

SOFTCOST ADA 410 33.3 12 1
UH-1 227 (estimated) 31 7

~I

TABLE 5-2

COSTS FOR SOFTWARE DEVELOPMENT AND SYSTEMS INTEGRATION

EFFORT (PM) SCHEDULE FULL-TIME STAFF__

SASET 574 27 21

SASET (CDR 646 45 14
SPECIFIED)

SOFTCOST ADA 701 45 15

UH-1 247.5 45 5 l
closely approximated the actual schedule for the UH-1. This is significant because the actual schedule slipped
a total of one year and six months when compared to the milestone dates specified in the RFP. A schedule
summary shown in Appendix A compares the RFP date with actual dates for each milestone. One of the
unanswered questions that arise when resulting schedule projections are compared to effort projections is the
reason for the discrepaacy between estimated and actual effort when schedule projections were very much on

Itarget with the actual schedule.

1
I

16 I
I

6.0 TRAINER QUALITY EVALUATION

There are various factors that are used to specify the types of quality desired in a particular software
product. The class of software usually drives the quality factors that are emphasized as most important [7].
For example, if software is expected to have a long life cycle, then maintainability and expandability are rated
as most important. If a software failure could result in the loss of human lives, software reliability, correctness,
and testability would be emphasized. Quality indicators will vary depending upon the definition of a quality
assessment framework.

There are two basic approaches for evaluating software quality 1) language specific and 2) non-
language specific. Generally non-language specific methods focus more on the measure of software
development techniques that promote quality (e.g. design techniques and methodology, design and code
reviews) than do the language specific techniques. In addition to measuring the use of quality enhancing
procedures, features of the actual software code are also measured. It is here that differences between
language specific and non-language specific frameworks are most apparent. The non-language specific methods
tend to measure generic aspects of the code such as the presence of machine code, excessive parameter passing,
and global versus local data - in other words, the use of coding procedures proven to yield structured,
descriptive, modular code showing high cohesion and low coupling. Conversely, the language specific approach
measures the existence of features unique to the language that will enhance or detract from software quality.
For example, Ada language features that enhance the quality of Ada code by promoting reusability include
the use of generic packages, tasks, exceptions, and information hiding. In a language specific quality
framework for Ada, it is these language features that would be measured.

Several specific methods and supporting tools were evaluated for potential application to the UH-1
FS project. Application of these tools and techniques are either manual or automated and most are not
entirely objective. Subjectivity in software quality analysis is unfortunately somewhat inherent in the basic
assumptions of what should be measured and how those measurements are made. Manual methods are
numerous and varied, relying heavily on questionnaires and/or manual code analysis. These types of quality
analyses are generally time intensive, not practically applicable to projects of moderate or large size, and not
widely adopted.

With so many techniques available, the outlying question is "Which method/tool is the right one to
use?" The advantage of any one approach over another is driven by the immediate project requirements and
long term goals. For projects of moderate to large size (with respect to the measures being taken), an
automated approach is obviously preferred. If specific features of the development language are of interest
and the positive or negative impact of their use is considered important, then a language specific approach
is warranted. These types of considerations address the immediate project requirements, but the long term
goals with respect to the developer's software development system must also be considered. If software is
primarily developed in one language, then a language specific approach may be preferred. If, however, any
of several languages could be used or multiple languages are used within one project, then it may be
impractical to acquire several language specific tools and try to integrate the results; a non-language specific
technique may be preferable.

An automated language-specific technique was selected for the UH-1 FS program to support software
quality evaluation- namely, AdaMAT/D (version 1.1). Supplementing the quality evaluation is an evaluation
of data collected on error quantity and type. The following sections describe both approaches for measuring
software quality.

17

6.1 ADAMAT/D RESULTS 3
The following sections present an overview of AdaMAT/D, a description of how it was applied to the

UH-1 FS program, and subsequent results.

6.1.1 Product Overview

AdaMAT/D is an automated tool developed by Dynamics Research Corporation that operates by m
examining compilable Ada source code with respect to its quality assessment technique. The technique used
by the tool is the counting of significant language features that are considered to promote or detract from the
quality of the product. These counts are the metric elements. Metric element scores are shown as a ratio of I
the number of opportunities to comply with the preferred quality practice versus the number of actual

compliances. For example, a metric score for proper declarations of constants would be calculated as the
number of constants declared in the declarative section versus the quantity that could have been declared in
the dec!arative section (as opposed to being hidden from the user in the code). The metric scores are then

aggregated to a criteria level and then to a factor level. The factors evaluated by the tool are reliability,
portability and maintainability. Seven criteria are evaluated: anomaly management, independence, modularity,
self descriptiveness, simplicity, system clarity, and exactness. Criteria scores are derived from 250 metric values. I
The tool provides the capability to tailor the metrics gathered and to tailor the aggregation process; that is,

the user has the ability to selectively omit metric elements and metrics. Weights can also be set to give greater

importance to one metric over another or one criteria over another in the score calculations. Results can be
viewed at any level in the hierarchy or reports can be triggered by user specified thresholds. Using thresholds,
the user would indicate minimal acceptable scores and a report would be generated only if the scores were
below the threshold. 3

Users were interviewed to obtain their opinion about the tool prior to procuring the tool for the
UH-1 FS project. The questions asked focused on how the product is used and value of scores. All of the
respondents felt it was difficult to learn how to use the tool at first but once it was made a part of the I
development cycle it became easier to apply. The major hurdle was educating the users on both the tool and

the underlying metrics -- what they mean and how they work together to give a score. Almost all users
examined the scores at the criteria level as opposed to the factor level. It was felt that pinpointing the cause
for a low score and that the identification of areas where further Ada training would be beneficial was easier
at this level.

6.1.2 Approach I

AdaMAT/D is most effective when the tool is tailored to an organization's specific coding standards.

AdaMATiD is run on a module by module basis throughout implementation in order to detect areas of non-

compliance to coding standards that detract unnecessarily from quality. Work is usually performed during the

early stages of code development to provide ample time to review results and to implement changes prior to

the start of the testing phase (81.

The first time user of AdaMat/D would apply the tool without any tailoring. The user would I
subsequently locate the code containing actual examples of non-adherence, analyze the code segments involved
in order to determine the reason for non-adherence, the negative effects of non-adherence if any, and make

sample modifications to the code to see the actual effects of obtaining adherence to the criteria. By a metric

by metric analysis, ihe user would determine those data items to be collected from source code (when there

is a good reason not to adhere to principal) and tailor the product accordingly [81.

When the application of the ADAMAT/D tool to the UH-1 FS redevelopment was discussed at a

NSIA CWG meeting, one of the concerns that was raised was that different organizations would have different

18!

standard for coding, even within the same application domain, i.e., trainers. The concern was that if the tool
were to be tailored for one organization, then subsequent projects would be required to conform to those same
development standards.

We were unable to acquire interim deliveries of the source code throughout implementation. Our
metric analysis started with the receipt of baseline version 15 of the source code which was the version of
software shipped to the first training site in Los Alimitos, California, one month prior to Government Final
Inspection. This version of the trainer was fully tested with the exception of the motion system. The source
code contained 577 separate files or approximately 200,000 physical lines of code.

The AdaMat/D reporting mechanism allows you to create a report on a single file or for different
combinations of Ada files. We had the option to calculate and report metric scores for each of the 577 files,
however, given that the tool was being applied after-the-fact, the effort would not have yielded results that
could be used to benefit the current project. Addressing the concerns voiced at the NSIA CWG meeting, it
was decided that it would be beneficial to apply an untailored version of AdaMAT/D to several trainer
applications and analyze the results prior to tailoring.

6.1.3 Results

Metric scores were calculated for three grouping of Ada source files and for the Ada source as a
whole. The three groups were 1) application software, 2) support software (described in Table 4-2), and 3)
software ported from the GAT and services software. Services software are general utilities that include math
functions, string functions, data interpolation, graphics functions and conversion routines. Table 6-1 provides
an overview of the resulting set of metric scores. Figure 6-1 provides a pictorial representation of the results.
A report for each set of metric scores is contained in Appendix G.

Table 6-1 shows scores at the factor level for each software group. The scores are computed based
on the number of opportunities to comply with the preferred quality practice versus the number of actual
compliances. For example, there were a total of 98,225 opportunities for compliance to enhance reliability
within application code of which there were 43,650 adherences. The results showed a high rating for
portability with an overall score of .96 out of 1.0. Scores for reliability and maintainability were lower at .47
and .56 respectively. Individual metrics scores were evaluated to ascertain if there several attributes of the
software that tended to pull the overall ratings downward. Of 108 metric elements applied in the application
software area, 55 metric scores indicated a level of potential non-adherence below 70 percent. There were
some design decisions that resulted in some of the lower ratings. For example, the trainer structural model
emphasized a message passing scheme that resulted in a smaller proportion of hidden types. The impact that
these decisions have to sustaining engineering tasks is unknown.

6.2 ERROR DENSITY ANALYSIS

Changes made to software during the development were formally reported on change report forms.
Action requests were used during design and unit testing prior to the time that software was placed under
formal configuration control. After unit and CSC testing, all changes were documented using Software
Trouble Reports (STRs) and standard government Discrepancy Reports (DRs). If a government DR would
result in a software change, then a STR would be generated. On each STR the developer would supply a
description of the problem, when the problem occurred, the source and type of error, and all affected software
and documentation.

19

TABLE 6-1 3
ADAMAT/D SCORES BY QUALITY CATEGORY I

RELIABILITY

Adherence Non-Adherence Total Score 3
APPLICATION 43,650 54.575 98,225 0.44

SUPPORT 12,905 13,970 26,875 0.48

GAT & SERVICES 9,354 7.101 16,455 0.57

TOTAL [65,909 75,646 (141,555 0.47

MAINTAINABILITY

Ad erence Non-Adherence Total Score

APPLICATION 87,o1 74,012 161,623 0.54

SUPPORT 22.850 19,5,12 42,392 0.54

GAT & SERVICES 18 - .2 8,141 26,453 0.69

TOTAL 128.773 101,95 230,468 0.56

PORTABILITY 2

Adherence Non-Adherence Total Score 3
APPLICATION 487.577 18.361 505,938 0.96

SUPPORT 107,745 5.531 113.276 0.95

GAT & SERVICES 77,892 2.422 80.314 0.97

TOTAL 673,214 26.314 699.528 0.96 3

ADAMAT/D SCORES - ALL CRITERIA 3
Adherence Non-Adherence Total Score

APPLICATION 548.183 87,490 635,673 0.86

SUPPORT 124.568 23,568 148,. 0.4

GAT & SERVICES 91.112 10.609 101.721 0.90 3
TOTAL 763.83 121.667 885.530 086

I
20 U

3

GAppice Softwe Aloom SUPo Softwae

10000 10000

IF

I . .. !..
Rc8sft MaWadKwf PmWAi* Afl Qw BWh~b~Y FUN

(CM (C4) (0-9 M816) (MA$.S) (M195) (CM)

GAT & Service Software ADl UH-1 FS Software

100000 --- 10 0

ft.&N1 7 U.M~iubakby Pahigurey AllMAT ResHulty M hy Puh16y AN OhaWU(05n7 (M)M (06n7 (09m (0147) (M) ('194 (MO

Figure 6-1. ADAMAT/D Results.

Reported errors are classified according to the source and type of error. The developer's form
identified eight classifications and an additional category labelled "other". Figure 6-2 shows the classifications
of STRs for the UH-l FS project. The figure shows a significant number of STRs, i.e. 39 percent, in the
performance problem category. The developer attributed the high number of performance problems to
erroneous classification by project staff. There were few time critical problems on the UH-1 of the nature that
would be described as a performance problem. When a problem was detected during testing, the tester would
not necessarily know the source of the problem and mark the STR as a performance problem because the
system did not "perform as expected". In retrospect, the developer suggested that the person who corrected
the problem should have been the one to select the problem class.

Figure 6-3 shows the history of reported problems accumulated by month up to the time that the
software was accepted at the first trainer site in August, 1990. The figure shows significant activity for a period
of about three months and then gradually dropping off in the last four months of the project. To the
developer's credit, the project sponsor was very impressed with the small number of open Discrepancy Reports
at the end of the project. At the time the trainer completed its in-plant test at the developer's site, there were
a total of only three open DRs. There was only one open DR when the trainer was installed and tested at
the first training site which was quickly fixed.

21

240-

II

avlo-
I Te

- I3
o-

140- .Wcm

Trouble Categorie

Figure 6-2. Trouble Report Classification.

Error Rate

260

240

140

J'0 I
100-

120-

0-

9/90 10/90 11/90 12/90 1191 2/91 3/91 4/91 5/91 6/91 7/91 8/91
Mond/Year

Figure 6-3. History of Reported Software Problems. I
There were a total of 511 STRs generated on the UH-1 FS program. Software reliability, measured

by the number of changes or error corrections made to the software is shown in Table 6-2. I
TABLE 6-2

UH-1 FS ERROR/CHANGE RATE

ERRORS/KSLOC 2.38 SLOC = Physical Lines (includes comments)

9.22 SLOC = Terminal Semicolons

22 I

I 7.0 CONCLUSION

Based on the early results of the UH-1 FS Ada Feasibility Study, the development team and those
involved with the effort have concluded that Ada is a viable, usable technology capable of supporting real-time
projects for training devices. The data collected on this project has led to a greater understanding of both the
Ada language and its development methodologies. The study also raises some questions about the influence
that other factors, i.e., structural model development methodology and redevelopments of existing systems,
have on overall productivity. Additional data points are required to perform a more detailed analysis of the
characteristics of Ada software development process in the trainer application domain. The following general
observations were made by the study team during the experiment:

A SLOC count using the body semicolons counting convention was 60 percent larger than the
terminal semicolons count. The body semicolons counting convention counts a statement terminated
by a carriage return in the package specification and a terminal semicolon in the body of an Ada
program. The size differential between body semicolons and terminal semicolons resulted from a
packaging framework used on the UH-1 program which resulted in about three package specs for each

I body.

With the exception of tasking, the use of Ada features was comparable to SEL data. UH-1 results
were compared with SEL trends in the use of Ada features over a span of seven years, beginning with
their first Ada project in 1985. Four special Ada features were compared: strong typing, generics,
package size, and tasking. The comparison indicates that the tasking feature of Ada is highly
application dependent.

I The phase distribution of effort was contrary to other published data [4] that indicates a shift of
effort from the integration and test phases to design phases for Ada projects. Nearly 60 percent of
the effort and schedule were expended after CDR. While additional data pointS are needed to
validate these assumptions, the differences are attributed to four factors: 1) The UH-1 is a
redevelopment of an existing system and this resulted in less time spent communicating requirements
between the developer and the sponsor, 2) The developer utilized the concept of a domain specific
software architecture (or structural model) which was developed on a previous IR&D project and
applied to the UH-1, 3) UH-1 phase distribution included systems integration and testing at the first
trainer installation site to obtain a fully functioning hardware-software system. 4) In an effort to meet
PDR and CDR payment milestones for the developer, milestone dates were scheduled earlier than
what may have otherwise been considered optimum.

A review of size estimates made at project milestones support the notions that t) there is a tendency
to underestimate support software, and 2) we tend to estimate in terminal semicolons as opposed to
body semicolons. Size estimates were made in the proposal by the developer, at PDR by PM TRADE,
and at CDR using function point analysis. In all cases estimates for support software were low by a
factor of 40 percent or more. In all cases, estimates were comparable to the actual size base on the
terminal semicolon counting convention.

Using a language expansion factor of 71 for Ada, the function point estimated sizes were high for
both the ACS and the Real-Time CSCI. The estimate for the ACS had only a relative error of 11
percent as compared to the 32 percent relative error of the Real-Time CSCI. A comparison of the

actual size of the Real-Time CSCI to the estimated size shows that an Ada language expansion factor
of 48 would have yielded the correct results. Interpreting the guidelines [91 to define and count
function point parameters, and extending the guidelines to training devices was not a straight-forward
process. The greatest difficulty was determining how instrument display devices, malfunctions, and

I various flight controls should be grouped and counted.

I 23

In general, the model projections for effort were much higher than the actual effort expenditure 3
reported by the developer. Model schedule projections closely approximated the actual schedule for
the UH-1. It is believed that the high productivity experienced on the project can be attributed to two
factors: 1) The UH- I is a redevelopment of an existing system and this resulted in less time spent
communicating requirements between the developer and the sponsor, 2) The developer utilized the
concept of a domain specific software architecture (or structural model) which was developed on a
previous IR&D project and applied to the UH-l. The cost models are typically used to estimate new
development efforts.

The major obstacle in achieving useful results with AdaMAT/D is educating the users on both the
tool and the underlying metrics -- what they mean and how they work together to give a score. The
resulting set of metric scores were difficult to interpret at the factor level given that there were no
historical data for comparison. It was decided that it would be beneficial to apply an untailored
version of AdaMAT/D to several training devices and analyze the resulting trends prior to tailoring.
The trend analysis could be used to develop coding guidelines for training devices.

II

I
I
I
I
U
I
U
I

~I

I.
I
I
I
I
I APPENDIX A

SOFTWARE PROJECT DATA COLLECTION FORMS

I FOR THE

UH-1 FS ADA FEASIBILITY PROJECT

I
I

I

I
I

1-

PROJECT QUESTIONNAIRE

GENERAL INFORMATION I
Please complete this form to the best of your ability for your project. If the question is not applicable, please
mark it N/A. If you don't know the answer, leave it blank. Mark each page containing confidential or
proprietary data "CONFIDENTIAL" on both its top and bottom in bold letters.

1. Your name: Katherine Miller Date: .11 20 I 91

2. Title: Software Engineer Phone: (301) 459 - 3711

3. Firm or Organization: lIT Research Institute I
Address: 4600 Forbes Blvd.. Lanham, MD 20706

I
4. Name of Project: UH-I FS Ada Systems Engineering Feasibility Project

5. Contract Number: N61339-88-C-0010 I
6. Customer Name: Naval Training System Center

7. Project Overview Description: This project is a redevelopment of an existing UH-1 Flight Simulator

from assembly to Ada to improve its capability to be supported and to provide a means to split a single

4-cockpit trainer into two 2-cockpit trainers, if needed. This project questionnaire reflects the following

developmental software components: 1OS CSC, Trainee Station CSC, DCE Diagnostics, Target I
Computer Diagnostics, ACS CSC. 3

8. Developer Contact: Ron Murphy Phone: (516 563 - 7940

9. Customer Contact: Robert Paulson Phone: (407 380- 4362 3
10. Current Status: First trainer delivered and accepted 9/91. Source lines of code counts provided in this

form were obtained from the "Cold Start" tape which was cut in 7/'91. ACS delivered and accepted in

9J91.

I
A-2 I

_____ ___!

PROJECT QUESTIONNAIRE

GENERAL INFORMATION

1. System/Software Characteristics

a. Operating Environment (check one):

[] Manned Flight [Unmanned Flight
[] Avionics [] Shipboard/Submarine
[x] Ground J Commercial

(SASET: Class of Software)

b. Applications domain:

Automation
[1] Command & Control

TelecommunicationsI[
[Test Systems

[x] Simulation
[] Data Processing
[I I Environment/Tools
[] Scientific
[J] Avionics
f J Other

(SoftCost-Ada: Type of Software)

2. Complexity

a. Rate the difficulty of the processing logic:

Very low - Strait line code. Standard types. General structures. Simple math. No tasking.
Low - Simple operators. Standard types. General structures. Simple math. Simple data
manipulation. No tasking.

I Nominal - Strait forward logic. Generics and standard structures. Standard I/O. Simple
tasking.

[x] High - Highly nested logic. Numeric types. Libraries of packages and generics.
Complicated I/O. Concurrent tasking.

[] Very high - Stochastic logic. Unique types. Libraries of packages, tasks, and generics.
Sophisticated math and I/O. Rendezvous.
Extra high - Dynamic resource allocation. Unique types. Special libraries. Time
dependent task scheduling. Multiple exception handlers. Optimization and efficiency
concerns.

(SoftCost-Ada: Product Complexity)

A-3

PROJECT QUESTIONNAIRE

GENERAL INFORMATION I
b. The complexity of this CSCI is best characterized by which of the following statements?:

Very low - Straightline code with a few non-nested structured programming operators: I
DOs, CASEs, IF-THEN-ELSEs. Simple predicates. Evaluation of simple expressions:
for example, A=B+C*(D-E). Simple read, write statements with simple formats. Simple
arrays in main memory. I
Low - Straightforward nesting of structured programming operators. Mostly simple
predicates. Evaluation of moderate level expressions, for example D=SQRT (B**2-
4.*A*C). No cognizance needed of particular processor or IiO device characteristics 1/0
done at GET/PUT level. No cognizance of overlap. Single file subsetting with no data
structure changes, no edits, no intermediate files.

[4] Nominal - Mostly simple nesting. Some intermodule control. Decision tables. Use of
standard math and statistical routines. Basic matrix and vector operations. I/O
processing includes device selection, status checking and error processing. Multifile input
and single file output. Simple structural changes, simple edits.

[xi High - Highly nested structured programming operators with many compound predicates. I
Queue and stack control. Considerable intermodule control. Basic numerical analysis:
multi-variate interpolation, ordinary differential equations. Basic truncation, roundoff
concerns. Operations at physical I1O level (physical storage address translations; seeks,
reads, etc). Optimized 1/0 overlap. Special purpose subroutines activated by data stream
contents. Complex data restructuring at record level.

[] Very high - Reentrant and recursive coding. Fixed-priority interrupt handling. Difficult
but structured numerical analysis: near-singular matrix equations, partial differential
equations. Routines for interrupt diagnosis, servicing, masking. Communication line
handling. A generalized, parameter-driven file structuring routine, file building,
command processing, search optimization.
Extra high - Multiple resource scheduling with dynamically changing priorities.
Microcode-level control. Difficult and unstructured numerical analysis: highly accurate
analysis of noisy, stochastic data. Device timing-dependent coding, microprogrammed
operations. Highly coupled, dynamic relational structures. Natural language data
management.

(Ada COCOMO: Software Product Complexity)

c. Degree of Real-time

[] Low - No tasking; essentially batch response
Nominal - Interactive with limited Ada tasking

Ixj High - Interrupt driven with tasking in milliseconds
Very high - Concurrent tasking with rendezvous in milliseconds
Extra high - Concurrent tasking with rendezvous in nanoseconds

(SoftCost-Ada: Degree of Real- Time)

I
A-4 l

I

PROJECT QUESTIONNAIRE

GENERAL INFORMATION

3. Reliability

a. Effect of a software failure

[] Inconvenience [] Moderate loss
[x] Easily-recoverable loss I I Major financial loss
[] Loss of human life

(Ada COCOMO: Required Software Reliability)

4. Interfaces

a. Man-machine Interaction. Address the level of man interaction inherent in the system.

[I Extensive and complex interactive type system
[x] Highly interactive system
[] Small level of interaction with system - system operates mostly in an autonomous fashion
[I] System is almost fully autonomous

(SASET: Man Interaction)

b. Software Interface Complexity:

How many other software systems and peripheral communications equipment with various
protocols and baud rates does this software system interface with? 8

(Note: Counted as 6 HWCI standard peripherals (disk, console, tape, printer, LAN, voice system) plus (1)
10S indicators and controls and (1) Trainee Station indicators and controls.)

(SASET: Software Interfaces)

5. Software Testability

[I Very difficult [Time intensive
[x] Difficult [I Easy

(SASET: Software Testability)

A- 5

PROJECT QUESTIONNAIRE

GENERAL INFORMATION I
6. Reused Code

a. Select the intended use of the majority of the software packaged for reuse: I
Not for reuse elsewhere

[1] Reuse within single-mission products
[xi Reuse across single product line

I I Reuse in any application

(Ada COCOMO: Required Reusability)

b. Reuse Costs

[x] Low - No reuse library. Limited packaging for future reuse
Nominal - Reuse library employed. Less than 10% of software being packaged for reuse.
High - Reuse li!, rary being populated. Less than 20% of software being packaged for
future r, -,-

[] Very Hii,,, - Reuse library exploited. More than 20% of software being packaged for
futr, .euse.

(SoftCost-.Ada: Reuse Costs)

A
I
I
I
I
1
I

I

I

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

1. Milestones

a. Schedule

Expected Actual

Milestone Date Date

Project Start Date 12/1/8 12/1/87
System Requirements Review 1//88 1/20/88
Software Specification Review 40/88 4/27/88
System Design Review N/A N/A
System Hardware PDR N/A N/A
System Software PDR 9 10/ 8
System Software CDR 3//89 7/24/89
Test Readiness Review 11/ /89 3/ /91
Functional Configuration Audit 3/ /91
Physical Configuration Audit 2//90 3//91
Formal Qualification Review 2/1/9 N/A
Operational Test and Evaluation 3//90 4/ /91
Project Completion Date 3//90 9/ /91

(Note: The original milestone schedule shown under the expected date column was specified in the RFP.
Difference between the expected and actual dates may have been caused by two major contract
modifications: one for the ACS and one regarding the use of the Navy device TH-11.

There were two CDRs held. The first CDR held on 7/24/89 was for the real-time CSCI plus DCE and
target computer diagnostics. The second CDR held on 11/28/89 was for the ACS CSC.

Because of differences in terminology between contract performance milestones and the terminology noted

above, the following assumptions were made to designate expected dates:

1. Government Final Inspection Complete in the CDRL coincides with Formal Qualification Review.

2 The dates for the Reliability Test and Maintainability Demo in the CDRL coincides with Operational
Test and Evaluation

3. Functional Configuration Audit {at Ft. Rucker} is scheduled 60 days prior to Project completion
date (Scheduled Government Acceptance).

4. Physical Configuration Audit is conducted {at Ft. Rucker} at the beginning of Government Final
Inspection.)

5. Project completion date coincides with the end of Government Final Inspection at the first training
site in Los Alimitos, CA. Government Final Inspection of the ACS was conducted at Ft. Rucker
during 1/92

(SASET: Schedule)

A- 7

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

b. Percent of development schedule devoted for Preliminary Design phase

[40 [l 33 H 25 [17 [x] 10 [] 5

(Note: Five months out of 4, 12 %, were spent on preliminary design.)

(Ada COCOMO X Factor: Risk Elimination By PDR)
(Ada COCOMO E Factor: Design Thoroughness By PDR)

2. Development Standards H
a. Check all types of standard used in this development: 3

[1 None
[] Ada Programming Standards

[Commercial
[] IEEE
[xi Military

I I Other

(SoftCost-Ada: Degree of Standardization)

b. List the name(s) of these standard(s): MIL-STD-2167, MIL-STD-2167A (for SDD onlv)

(SASET: Software Documentation) 3
c. Were these standards tailored specifically for use on this effort?

[I Yes [xi No n

(SoftCost-Ada: Degree of Standardization)
(SASET: Software Documentation)

d. List the name(s) of the software documents required: SDP, SRS, STP, SDD, MMR,.
TrPRR, CSOM (Computer Systems Operator's Manual), VDD, CRISD, SPS 3

(SASET: Software Documentation)

3. Risk Mana2ement

a. Number and criticality of risk items

[xi < 5, Noncritical

A-8 I
I

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

> 5, Noncritical
1, Critical

[] 2-4, Critical
H] 5-10, Critical

> 10, Critical

(Ada COCOMO E Factor. Risk Elimination By PDR; not required by COSTMODL)

b. Risk Management Plan identifies all critical risk items, establishes milestones for resolving
them by PDR

Fully
Mostly

[] Generally
[] Some
[] Little
lxi None

(Ada COCOMO E Factor: Risk Elimination By PDR)

c. Schedule, budget, and internal milestones through PDR compatible with Risk Management Plan

[I Fully
[I Mostly
[] Generally
[] Some
[] Little
[xj None

(Ada COCOMO E Factor: Risk Elimination By PDR)
(Ada COCOMO E Factor: Design Thoroughness By PDR)

d. Tool support available for resolving risk items

[H Full
[I Strong
[I Good
[xi Some

Little
j] None

(Ada COCOMO Z Factor: Risk Elimination By PDR)

4. Software Reviews

a. Select all informal reviews held on the software during this development:

A- 9

PROJECT QUESTIONNAIRE 1
DEVELOPMENT METHODOLOGY

[H None 1
[xi Quality inspections/audits
[x] Design walkthroughs
Ix] Design inspections
[xi Code walkthroughs
[x] Code inspections
I Other m

(SoftCost-Ada: Use of Peer Reviews)

b. Select all management reviews held on the software for this project:

[H None
[xi Monthly project reviews
[x] Weekly status reviews

[I Other __

(SoftCost-Ada: Use of Peer Reviews)

5. System/Software Requirements m

a. Select the option which corresponds to the level of definition and understanding of system
requirements:

H] Very little definition and understanding of system requirements

Questionable definition and understanding of system requirements I
[x] Fairly complete definition and understanding of system requirements
I I Very complete definition and understanding of system requirements

(SASET: System Requirements) I
b. Select the option which corresponds to the level of definition and understanding of software

requirements: I
Very little definition and understanding of software requirements

I Questionable definition and understanding of software requirements
[x] Fairly complete definition and understanding of software requirements I
[I Very complete definition and understanding of software requirements

(SASET. Software Requirements) I
c. How will overall technology changes impact the project?

I J During the development, the requirements will change more than once to upgrade the
system, due to significant improvements in technology

[1] During the development, there will be at least one (but less than three) significant

A- 10 I
________l

U PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

modifications to the system due to technology upgrades
[xi During the development there will be some minor modifications due to technology

upgrades
There will be no changes to the system or requirements during the development effort.

5(Note. The target computer changed from MC68020 to MC68030. The toolset is constantly evolving.)

(SASET: Technology Impacts)

i d. Select the percentage of software requirements well established:

[j >90% [xj >60% [] >50% [>30% 1 <30%

(SoftCost-Ada: Requirements Volatility)

e. System requirements baselined, under rigorous change control

[xj Fully
Mostly

[I I Generally
[1 Some
[] Little
I H None

(Ada COCOMO E Factor: Requirements Volatility)

f. Level of uncertainty in key requirements areas: mission, user interface, hardware, other
interfaces

3 [I Very little
[xj Little
[l Some
I] Considerable
[] Significant

Extreme

i (Ada COCOMO Z Factor: Requirements Volatility)

- g. Organizational track record in keeping requirements stable

[Excellent
jxj Strong
[! Good
[J Moderate
[1 Weak3 [] Very Weak

3 A-II

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

(Ada COCOMO Z Factor: Requirements Volatility) I
h. Use of incremental development to stabilize requirements 3

[1 Full
[] Strong
[1 Good
lx] Some

Little
[] None I

(Ada COCOMO Z Factor: Requirements Volatility)

i. System archi:cture modularized around major sources of change I
H Fully

[] Mostly
[] Generally
[x] Some

Little
H] None

(Ada COCOMO Z Factor: Requirements Volatility) 1
j. Level of uncertainty in key architecture drivers: mission, user interface, hardware, COTS,

technology, performance

[1] Very Little
Little

[x] Some
Considerable

[] Significant
[] Extreme

(Ada COCOMO E Factor: Design Thoroughness By PDR)

6. Commercial off-the-shelf software (COTS) I
a. Select the option which best describes the expected impact of integrating commercial off-the-

shelf software into the system:

[J] There will be many impacts on the design/development effort to ensure that the vendor
supplied COTS software will interface correctly with the developed operational software. U

[xi There will be some impacts on the design/development effort to ensure that the vendor
supplied COTS software will interface correctly with the developed operational software.
There will be few impacts created by the COTS software packages to support the

A - 12 I
I

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

operating environment of the applications software.
[J] There will be no impacts caused by the purchased software as the purchased software

only performs an operating environment support function (i.e., operating system).

5 (SASET: COTS Software)

7. Use of Software Tools

5 a. Specify the type of environment that will be used to develop the software:

[Basic Ada language tools [x] MAPSE, plus access to host tools
[] MAPSE, plus access to host/target toolsI[] Full, life cycle APSE [] APSE

(Note: Tools include compiler, library manager, editor, linker/loader, CCC, Harvard Project Manager)

I (SASET: Software Development Tools)
(SoftCost-Ada: Use of Software Tools/Environment)

I b. Specify the type of tools that will be used to develop the software:

[Basic microprocessor tools
[] Basic minicomputer tools
[x] Strong mini, Basic maxicomputer tools
[] Strong maxi, MAPSE5 [] Advanced maxi, APSE

(Ada COCOMO: Use of Software Tools)

C. Tool support for developing and verifying Ada package specs

[J Full
Strong

I] Good
Ixj Some
[] Little
[] None

(Ada COCOMO Z Factor: Design Thoroughness By PDR)

8. Use of Modern Proerammin2 Practices

a. Degree to which modern programming practices are used in developing software:

[l No use
Beginning

[x] Reasonably experienced in some

SA- 13

PROJECT QUESTIONNAIRE U

DEVELOPMENT METHODOLOGY

[] Reasonably experienced in most n
[] Routine use of all

(Ada COCOMO: Use of Modem Programming Practices) I
(Ada COCOMO X Factor for Maintenance Model: Use of MPPs)

b. Ada Development Methodology n

I] Structured programming
[xi Object-oriented design plus structured programming
[(] Ada packaging methods I

Integrated life-cycle methodology which exploits Ada reusability concepts
)] Other 3

(SoftCost-Ada: Use of Modern Software Methods)

C. Maintenance Conformance to the Ada Process Model 3
[J Full

General
[x] Often I
[] Some
[] Little
[] None 3

(Ada COCOMO Z Factor for Maintenance Model: Conformance)

II

I
I
I

A- 14 I
I

PROJECT QUESTIONNAIRE

SOFTWARE SIZE

1. Size Estimates

a. Number of CSCIs: 2

(SASET: Number of CPCIs)

b. Identify counting convention which is used to provide requested sizing information in (c).

[I Physical lines [Non-comment, non-blank lines
[xi Terminal semicolons [] Essential semicolons
[x] Body semicolons
[] Other

c. Enter the requested sizing information below, in thousands of lines of source code (KSLOCs).

UH-1 FS Source Code: By Terminal Semicolons

Deliverables Language New Reused/ Reused/ Software
Program I I IModified Unmodified Type

lOS CSC Ada 11188 483 Application

Trainee Station Ada 11556 933 Application

CSC

ACS CSC Ada 6386 137 Application

Ada 1701 72 Support

Ada 2892 3267 Application

Common Code Ada 15 82

I DCL 469 115 Support

Assembly 6545

n DCE Diagnostics Ada 6804 530 Support

Target Computer Ada 604 457 Support
Diagnostics

Daily Readiness Ada 908 279 Support

ITOTAL 49,068.00 3,088.00 3,267.00 55,423.00

SA- 15

i i | | I i I

PROJECT QUESTIONNAIRE 3
SOFTWARE SIZE

UH-1 FS Source Code: By Body Semicolons

Deliverables Language New Reused/ Reused/ Software 3
Program Modified Unmodified Type

1OS CSC Ada 15021 570 Application 1
Trainee Station Ada 17789 933 Application

CSC I
ACS CSC Ada 9768 137 Application

Ada 1787 72 Support

Ada 15642 9997 Application

Common Code Ada is 82 3
DCL 469 115 Support

Assembly 6545 1
DCE Diagnostics Ada 6804 677 Support

Target Computer Ada 3017 544 Support
Diagnostics

Daily Readiness Ada 908 345 Support 3
TOTAL 77,765.00 3,475.00 9,997.00 91,237.00

(SoftCost-Ada: Ada Usage Factor) I
(SoftCost-Ada: New, Reused, Modified Ada Components)
(SoftCost-Ada: New, Reused, Modified Other Components)
(SASET: Primary Software Language)
(SASET. Programing Language)
(SASET: Direct Input for SLOC)

d. Reused software: I% i
(SoftCost-Ada: Reuse Benefits) 3
e. Number of delivered source instructions adapted from existing software to form the new

product: 13.47 KSLOC 3
% of adapted software's design modified in order to adapt it to new environment: 10 %

% of adapted software's code modified in order to adapt it to new environment: 30 %

A - 16

I

I.
I PROJECT QUESTIONNAIRE

SOFTWARE SIZE

% of effort required to integrate the adapted software into the new product and to test the
resulting product as compared to the normal amount of integration and test effort for software
of comparable size: 10 %

(Ada COCOMO: Adapted Code)

1 2. Database Size

a. Database size (in bytes or characters as percentage of total program size): 5 %

(Ada COCOMO: Database Size)
(SoftCost-Ada: Database Size)

AI
I

I
I

I

PROJECT QUESTIONNAIRE I
PROJECT STAFFING

1. Staff Size/Availability

a. Staff availability: 45 17c

(SoftCost-Ada: Staff Resource Availability)

b. Percent of required top software architects available to project 3
1 120 11 100 11 80 lx] 60 1H 40 1 20

(Ada COCOMO Z Factor: Risk Elimination By PDR) I
(Ada COCOMO Z Factor: Design Thoroughness BY PDR)

c. Difficulty of staffing due to special training and clearances: I
Staffing of the project will be difficult because of special training or security
requirements.

H] Initial staffing will be difficult because of special training or security requirements.
[x] Staffing of the project is projected to be fairly easy but there are some training

requirements.
[1 Staffing will not pose any problem at all.

(SASET: Personnel Resources) I

2. Staff SkillVExperience

a. Skill Level of Analysts

[I Bottom 15% [1 35% 11 55% [xi 75% [1 Top90% 5
(Ada COCOMO: Anabyst Capability)
(SoftCost-Ada: Analyst Capability)

b. Skill Level of Programmers

II Bottom 15% [1 35% [xi 55% H1 75% [1 Top 90%

(Ada COCOMO: Programmer Capability)

c. Average experience with similar applications: 2 years, 0 months

(Ada COCOMO: Applications Experience)
(SoftCost-Ada: Applications Experience)

d. Average level of virtual machine experience of the proiect team developing the software module:

A
A - 18 U

I

PROJECT QUESTIONNAIRE

PROJECT STAFFING

2 years 0 months

(Ada COCOMO: Virtual Machine Experience)

e. Host Machine Expertise:

[I Inexperienced - completely new hosting hardware system
[x] Little experience - mostly new hosting hardware system
[J] Average experience - most of the hardware system has been utilized by members of the

development team before
[] Highly experience - extensive experience with hardware system

(SASET: Hardware Experience)

f. Software Language and Operating System Expertise:

[I Completely new hosting operating system or software language
[x] Few people with experience with operating system and/or software language
[] The software language and operating system have been utilized by the company before

Extensive experience with the software language and operating system

(SASET: Software Experience)

g. Experience with chosen development methodology:
_years 0 months

(SoftCost-Ada: Ada Methodology Experience)

h. Experience with Ada Process Model

[J] Successful on > 1 mission critical project
Successful on 1 mission critical project

[] General familiarity with practices
[] Some familiarity with practices
fx] Little familiarity with practices
[] No familiarity with practices

(Ada COCOMO: Experience with Ada Process Model)

i. Project team's equivalent duration of experience (at the beginning on the project/build) with the
programming language to be used:

0 years 6 months

(Ada COCOMO: Programming Language Experience)
(SoftCost-Ada: Ada Language Experience)

A - 19

PROJECT QUESTIONNAIRE I
PROJECT STAFFING

j. Number of Ada projects completed by team members: 0 I
(SoftCost-Ada: Number of Ada Projects Completed) I
k. Ada environment experience:

[x] Less than 3 months of experience 3
[] Between 3 - 6 months of experience

Between 6 - 12 months of experience
Over 1 year of experience

(SofiCost-Ada: Ada Environment Experience)

I. Level of product familiarity of the development team: 3
This application is a new project not in our current line of business

[] This application is a normal development project that is a part of our current line of
business

[xi This application is a familiar type of project having already been developed by the
company before or similar to other projects we have developed

[I Many applications of this type have been developed by the company (greater than 7)

(SASET: Development Team)

3. Teamwork Capability

a. Select the type of team used for software development: m

[I Design teams [] Programming teams
[x] Interdisciplinary teams [Participatory teams m
[I Not used

(SoftCost-Ada: Team Capability) i

I
t
I
I

A -20 I
I

PROJECT QUESTIONNAIRE

COMPUTER SYSTEM

1. Development Environment

a. Number of different types of workstations: 2 (0 to 100)

(SASET: Workstation Types)

b. Rate the virtual machine volatility of the development system, based on frequency of
major/minor changes:

[xi 12 months (major) / 1 month (minor)
[] 6 months (major) / 2 weeks (minor)

1 2 months (major) / 1 week (minor)
[1 2 weeks (major) / 2 days (minor)

(Ada COCOMO: Virtual Machine Volatility - Host)

c. Select the following option that best assesses the embedded features of the development system:

[] Hardware is to be developed, but its completion will occur long before the software is
to be ready
Hardware is to be developed on the contract, it is to be developed concurrently with the
software and the hardware can/does have major impacts on the software

[] Hardware is to be developed on the contract, it is to be developed concurrently with the
software but the hardware has little impact on the software

[x] No new hardware is to be developed under the effort; there will be no impact on the
software development

(SASET: Embedded Development System)

d. Rate the software tool/environment stability of the development system:

[] Very Low - Buggy compiler. APSE change every 2 weeks.
[] Low - Stable but incapable compiler. APSE change every month. New tool rate 1 per

week.
[1] Nominal - Stable compiler. APSE change every 3 months. New tool rate 1 per quarter.
[I High - Stable compiler. APSE change every 4 months. New tool rate 1 per month.
[x] Very High - Stable compiler capable of tasking. APSE change every 6 months. New tool

rate 1 per quarter.
[1] Extra High - Stable and fully capable compiler. APSE change ever 6 months. New tool

rate I per 6 months.

(SoftCost-Ada: Software Tool/Environment Stability)

e. Address the difference between the development hardware system and the host system:

[] Development computer significantly different than target computer, hardware emulation

A- 21

!
PROJECT QUESTIONNAIRE 3

COMPUTER SYSTEM

or math modelling required for missing hardware of software.
[] Development computer different than target computer, some hardware emulation or

math modeling may be required for missing hardware or software.
[xi Some elements of the hardware/software development system are different from the target

system but no problems or modifications are foreseen.
[Development and target hardware/software system are identical or are one in the same.

(SASET: Development Versus Host System)

2. Target Computer Configuration 3
a. Rate the virtual machine volatility of the target system, based on number of major/minor

changes:

[x] 12 months (major) /'1 month (minor)
11 6 months (major) / 2 weeks (minor)

1 2 months (major) / 1 week (minor) I
1 1 2 weeks (major) / 2 days (minor)

(Ada COCOMO: r'7rtual Machine Volatility- Target) I
b. Identify the system architecture:

[] Centralized (single processor) I
[] Tightly-coupled (multiple processor)
[x] Loosely-coupled (multiple processor)
[] Federated (Functional processors communicating via a bus) I

Distributed (centralized database)
[] Distributed (distributed database)

Number of processors: 6

(SoftCost-Ada: System Architecture)
(SASET: Hardware System Type) I

3. Performance Requirements

a. Main Storage Constraint: < 50 %

(Ada COCOMO: Main Storage Constraint) 1
(SASET: Percent of Core Utilized)

b. Overall Hardware Constraints. Overall hardware refers to processor memory, WO capacity, and 3
throughput (ie. CPU speed) available within the target computer system.

A
A -22 I

___ I

PROJECT QUESTIONNAIRE

COMPUTER SYSTEM

Close to 100% utilization
[j] Difficult hardware capacity limitations (85% to 95%)
[] Average hardware capacity limitations (75% to 85%)

Minimal hardware capacity limitations (50% to 75%)
[x] Less than 50% of available processor resources

(SASET - Hardware Constraints)
(SoftCost-Ada: Degree of Optimization)

c. Execution Time Constraints. Select the percentage which best reflects the percentage of available
execution time expected to be used by the subsystem and any other subsystems consuming the
execution time resource.

[xi at most 50% 170% [185% [195%

(Ada COCOMO: Execution Time Constraint)

d. Select the criteria which reflects the performance constraints of the software system:

I I Mission critical, error free or very difficult response times (real-time software)
[xi High reliability or difficult response times
[] Average reliability (non real-time software)
H Non-critical software with no tight performance requirements

(SASET: Timing and Criticality)

4. Microprocessor Code

a. Percentage of software functions that are to be implemented in firmware: < 5 %

(Note: Bootstrap and downloading functions were partially implemented in firmware.)

(SASET: Percentage of Microprocessor Code)

A -23

PROJECT QUESTIONNAIRE

DEVELOPMENT ENVIRONMENT

1. Project Orp-anization

a. Number of organizations within the company significantly involved during the software
development: 5

(SoftCost-Ada: Number of Organizations) I
b. Scope of Support

[x] Low - No support to non-software organizations
[I I Nominal - Liaison support to non-software organizations

[High - Extensive support to system test organizations
[J Very High - Extensive support to system engineering and test organizations.

CSSR/CSCSC reporting requirements.

(SoftCost-Ada. Scope of Support) g
c. Organizational Interface Complexity

[] Single costumer collocated with developer
[I] Single customer, single interface
[] Multiple internal interface, single external interface
Ix] Multiple internal and external interfaces
[] Multiple interfaces, geographically distributed

(SoftCost-Ada: Organizational Interface Complexity)

d. Number of locations at which software is developed (from I to 100): 1

(SASET: Development Locations) 5
e. Number of customer locations: 5

(Note: NTSC, FL; Ft. Rucker, AL; A VSCOM, St. Louis; Peoria, IL; and Los Alamitos, CA) 3
(SASET: Customer Locations)
(SASET: Information Travel Requirements) 5

2. Computer Resources

a. Characterize the development facilities and the perceived availability of the hardware (terminals I
and computers):

[] Development will be restricted due to hardware unavailability caused by high utilization 3
or special hardware needs.

[I Development is to occur on shared hardware that has varied utilization but generally

A- 24 I
I

3 PROJECT QUESTIONNAIRE

DEVELOPMENT ENVIRONMENT

utilization is high (hardware shared by more than one project)
S[Development is to occur on hardware shared between a small group of projects:

hardware availability is generally good.
IxI Development is to occur on hardware dedicated to the project and hardware availability

is excellent

(SASET: Development Facilities)

b. Computer resource availability

[] Extreme equipment and facility limitations
[I Computer shared or remotely accessible
[x] Interactive access to dedicated computer resources
f J Dedicated facilities with multiple LAN-servers/worker
I Software factory with multiple LAN-servers and specialized Ada machines

I(SoftCost-Ada: Computer Resource Availability)

c. Select the average time required to submit a job to be run until the results are back in the
developer's hand:

[x] Interactive, 1 terminal/person [] Interactive, .3 terminal/person

I] < 4hours [] 4- 12 hours [> 12 hours

(Ada COCOMO: Computer Turnaround Time)

3. Security and Privacy Restrictions

5 a. Classified Application:

fxj Unclassified
Classified (Secret, Top Secret)

(Ada COCOMO: Classified Security Application)

b. Security Requirements

[xi None
[] Database integrity/privacy considerations

Physical security with access controls
I] Demonstrably correct trusted system. Physical security with access controls.3 [1] Verifiably correct trusted system. Physical security with access controls.

(SoftCost-Ada: Security Requirement)

1

3 A- 25

PROJECT QUESTIONNAIRE U
DEVELOPMENT ENVIRONMENT

c. Internal Computer System Security Safeguards I
[x] None
[I] Security policy well defined and enforced

[Marking - Access control labels are associated with all data
[1] Identification - Access is based on who is accessing and the levels of information that the

subject is authorized to access.I
[] Accountability - Audit information is kept and protected. Actions affecting security can

be traced to responsible party
Assurance - System contains trusted mechanisms that are independently evaluated to
provide assurance that the system is accountable

[1] Continuous - The mechanisms that provide assurance are continuously protected against
tampering and unauthorized changes

(SASET: Software Security)

i

I
I
U
I

I
I

I
I

A -26 I
i

PROJECT QUESTIONNAIRE

RESOURCE ALLOCATIONI
I. Effort

a. Total Staff: 247.5 (staff months effort end-to-end based on 152 hours/staff month)

b. Minimum Staff Size:

c. For each software activity, please provide the total effort, by phase, in staff-months it took to
complete.

Phase WBS # WBS Task WBS # WBS Task Hours l
Primary Primary Secondary Seondary Used

1 2171 Real Time 0000 Sys Requirements 99.50
1000 S/W Requirements 677.00
2000 Top-Level Design 427.00

2172 Non-Real Time 0000 Sys Requirements 37.00
1000 S/W Requirements 211.00
2000 Top-Level Design 531.50

ECP - ACS (6) 9006 8.00
2311 Phase I Eng Data 1,177.00
2235 Reviews 118.00
2191 Benchmark Testing 308.00
2211 Sys Engineering 2,465.00
2234 Quality Assurance 28.00

Total Hrs Phase I 6,087.00

Phase WBS # WBS Task WBS # WBS Task Hours
Primary Primary Secondary Secondary Used

II 2451 Real Time 3000 Detailed Design 2,799.50
9006 4.00

2452 Non-Real Time 3000 Detailed Design 2,713.50
9006 59.50

2510, 2573 Engineering Data 724.50
2485 Reviews 150.00
2613 Benchmark Testing 660.00
2563 Phase II Eng Data 1,550.00
2900 ECP (3-6) 0000 32.00
2900 ECP (3-6) 2451 24.00
2900 ECP (3-6) 2452 231.00
2900 ECP (3.6) 2510 2.00
2484 Quality Assurance 403.00

A
i A- 27

I

PROJECT QUESTIONNAIRE 3
RESOURCE ALLOCATION

Total Hrs Phase II 9,353.00 3
Phase WBS # WBS Task WBS # WBS Task Hours 3

Primary Primary- Secondary Secondary Used

III 2761 Real Time 4000 Implementation 1,011.90
5000 CSC Testing 4,940.00

2752 Non-Real Time 4000 Implementation 1,086.80
5000 CSC Testing 4,633.20

2751 In House Dev/Test 7,651.20
2753 On Site Install & Integ 154.00
2754 Final Test 677.80
2757 Config Audit 48.00
2780 Reviews & Conf 102.00
2563 Phase III Eng Data 1,102.00
2779 Quality Assurance 430.00
2777 S/W Config Mgmt 350.00

Total Hrs Phase III 22,186.90 1
Total All Phases 37,626.90 1

d. Average No. of Hours per Staff Month: 151 (default = 152 hours). 3

I
I
I
1
I
I

A -28 I
I

3 APPENDIX B

I INSTRUCTIONS FOR

3 SOFTWARE PROJECT DATA COLLECTION FORMS

I-

PROJECT QUESTIONNAIRE 3
GENERAL INFORMATION I
1. Your Name and Date

Identify the person completing the questionnaire and the date that the form is being completed

2. Title and Phone 5
Enter the title of the person completing the questionnaire and the number at which they can be reaclud.

3. Organization and Address 3
Identify the company or organization of the person completing this form.

4. Name of Project I
Enter the name of the project for which the software is being developed 3
5. Contract Number

If the software is developed under government contract, enter the prime contract number. 5
6. Customer Name

Enter the name of the organization for whom the software is being developed I
7. Project Overview Description

Describe the overall mission or purpose of the system for which the software is being developed

8. Developer Contact and Phone 3
Enter a point of contact of the company or organization which is actually performing tne software development
and the number at which they can be reached.

9. Customer Contact and Phone

Enter a customer point of contact and the number at which they can be reached 3
10. Current Status

Enter whether the project is completed or ongoing. If ongoing, indicate the most recently completed project
milestone.

I
I

B-2

I

I

PROJECT QUESTIONNAIRE

PRODUCT DESCRIPTION

1. System/Software Characteristics

a. Operating Environment:

(SASET: Class of Software)
Select the operating environment of the target system.

b. Applications domain

(SoftCost-Ada: Type of Software)
Select the appropriate software application domain for the project. The following types of systems
can be designated:

Automation - The software will be used in process control systems, such as those used for
environmental control in a manufacturing plant.

Avionics - The software will be used in avionics and other embedded systems, such as those used
to control complex, real-time radars and guidance and control systems.

Command & Control - The software will be used in command and control systems, such as air
traffic control systems.

Data Processing - The software will be used in traditional data processing systems, such as
management information systems, payroll, accounting time cards, etc.

Environment/Tools - The software will be used in software development tool systems, such as
compilers, CASE, and integrated software engineering environments.

Scientific - The software will be used in scientific applications, such as seismic processing or weather
mapping.

Simulation - The software will be used in simulation systems, such as aircraft flight simulators.

Telecommunications - The software will be used in telecommunications systems, such as digital
switches or PABX's.

Test - The software will be used in test systems, such as those used to monitor the performance
application software.

Other - Other types of applications not included in those listed above.

2. Complexity

a. Rate the difficulty of the processing logic

(SoftCost-Ada: Product Complexity)
The following explanations are offered to assist with rating selections:

B-3

PROJECT QUESTIONNAIRE 1
PRODUCT DESCRIPTION

Strait line code, standard types - The software will perform very basic functions using Ada's standard
types. It will use basic math operations and will not use Ada's tasking conventions. An example
of software with this amount of complexity is a screen generator or report writer.

Simple functions, standard types - The software will perform a basic set of functions using standard
types, basic math operations, and no tasking. It may include some data manipulation routines and
library calls. An example of software with this complexity level is a simple device driver or file
management routine.

Strait forward logic, generics and simple tasking - The software will perform a set of functions using
straightforward logic and I/O processing. It uses simple tasking primitives and generates/uses some generics. 1
An example is scientific software used to compute the radius of an ellipsoid in three dimensions.

Highly nested logic, numeric types, concurrent tasking - The software will perform some real-time functions.
It will be logically complex with complicated 110 structures and highly nested logic. It will generate and use 1
packages and generics from a reuse library. It will also make use of Ada's numeric types and will handle
multiple tasks executing concurrently. An example is an exception handler. 3
Stochastic logic, unique type, rendezvous - The software will perform real-time functions which have
significant interface and interaction requirements. It will employ sophisticated math functions, user defined
types, a reuse library and Ada's rendezvous facility for task synchronization. An example is a scheduler or 1
simple control system.

Dynamic resource allocation, unique types, rendezvous - The software will perform real-time functions, like
signal processing which have extremely complex interfaces, control logic and time-dependent processing
needs. It performs very difficult, unstructured numerical analysis functions, makes use of user defined types,
incorporates very specialized libraries ofpackage and generic units and contains very complicated exception
handling provisions. Most military avionics and command and control systems fit this category. 1
b. The complexity of this CSCI is best characterized by which of the following statements?:

(Ada COCOMO: Software Product Complexity)

Select the statement which best characterizes the complexity of your application.

c. Degree of Real-time I
(SoftCost-Ada: Degree of Real- Time)
The following explanations are offered to assist with ratings selections: 1
Essentially batch response - The software will perform in batch mode with no interactive or real-time
response requirements. 1
Interactive with limited Ada tasking - The software will perform in an interactive mode, with a limited
amount of Ada tasking. 3
Interrupt driven with millisecond tasking - The software will perform in a real-time mode, be interrupt driven
and able to handle task communication in the millisecond time range. 1

B-4

I

PROJECT QUESTIONNAIRE

PRODUCT DESCRIPTION

Concurrent tasking with millisecond rendezvous - The software will perform in a real-time mode, support
concurrent tasking and be able to support rendezvous which occur in the millisecond time range.

Concurrent tasking with nanosecond rendezvous - The software will perform in a real-time mode, support
concurrent tasking and be able to support rendezvous which occur in the nanosecond time range.

3. Reliability

a. Effect of a software failure

(Ada COCOMO: Required Software Reliability)
The following explanations are offered to assist with rating selections:

Inconvenience - The effect of a software failure is simply the inconvenience incumbent on the denelopers to
fix the fault. Typical examples are a demonstration prototype of a voice typewriter or an early feasibility-
phase software simulation model.

Easily-Recoverable Loss - The effect of a software failure is a low level, easily-recoverable loss to users.
Typical examples are a long-range planning model or a climate forecasting model.

Moderate loss - The effect of a software failure is a moderate loss to users, but a situation from which one
can recover without extreme penalty. Typical examples are management information systems or inventory
control systems.

Major financial loss - The effect of a software failure can be a major financial loss or a massive human
inconvenience. Typical examples are banking systems and electric power distribution systems.

Loss of human life - The effect of a software failure can be the loss of human of life. Examples are military
command and control systems or nuclear reactor control systems.

4. Interfaces

a. Man-machine Interaction

(SASET: Man Interaction)
Address the level of man interaction inherent in the system. The more extensive man interactive systems
are generally more expensive and take longer to build due to special input and error detection and correction
functions that are needed.

b. Software Interface Complexity

(SASET: Software Interfaces)
Enter the number of software systems and peripheral communications equipment with various protocols and
baud rates that this software system will interface with?

B-5

I
PROJECT QUESTIONNAIRE 3

PRODUCT DESCRIPTION

5. Software Testability 3
(SASET: Software Testability)
Systems possessing performance operations that are difficult to test are generally more expensive and take I
longer to build due to added complexity of the testing phase.

Very diffcut software system to test - long running programs with extensive logical paths to check

Difficut software system to test - long running programs with many logical paths to check

Time intensive program - requires extensive testing but will not have a high degree of difficulty 3
Program is easy to test - small number of items to test

6. Reused Code

a. Select the intended use of the majority of the software packaged for reuse I
(Ada COCOMO: Required Reusability)
The rating selected should reflect added design, documentation, and more extensive testing associated with
developing reusable Ada components.

b. Reuse Costs I
(SoftCost-Ada: Reuse Costs)
The following explanations are offered to assist with ratings selection: 3
No reuse library - Neither a reuse library nor a set of technical guidelines have been established by the firm.
The costs of establishing the reuse infrastructure will be borne by the project.

Reuse library employed - A reuse library has been established for managing reusable artifacts. The library
is not well populated and technical guidelines for packaging, quality assurance, and configuration
management of reusable components are under development. The costs associated with trial use and
refinement of the infrastructure will be borne by the project.

Reuse library being populated - A reuse library has been established and is current being populated.
Technical and managerial guidelines for reuse have been published The costs associated with use of the I
infrastructure will be borne partially by the project and possibly a process group as the library is being

populated.

Reuse library being exploited - A reuse library has been established and populated, and is being exploited I
on the project. Technical guidelines for reuse have been published and people have been trained in their
use. The costs associated with use of the infrastructure will be borne by the project as will their
proportionate share of the costs associated with operating the library.

B
B-6

I

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

1. Milestones

a. Schedule

(SASET: Schedule)
Enter the expected and actual dates for each milestone, or N/A if the milestone does not apply to this
project. Several CSCIs may be involved and they do not necessarily need to adhere to the same schedule.
If an expected date is an estimated date rather than a contract date, put an asterisk after that date. The
format for software development schedule date is (Month/Year).

b. Percent of development schedule devoted for Preliminary Design phase

(Ada COCOMO Z Factor: Risk Elimination By PDR)
(Ada COCOMO Z Factor: Design Thoroughness By PDR)
Select the percentage that most closely approximates the percentage of time devoted to the prelimary design
phase based on a total time starting with Software Specification Review and ending with Formal
Qualification Review.

2. Development Standards

a. Check all types of standard used in this development

(SoftCost-Ada: Degree of Standardization)
The following explanations are offered to assist with rating selections:

None - No software development standards are available or will be used on the project.

Ada Programming Standards - The project will use a set of Ada programming standards that apply primarily
to the coding of Ada software.

Commercial Life Cycle Standards - The project will use commercially developed (IEEE Standards, etc.) or
company developed and client approved standards that apply to the design, development, and documentation
of the Ada software.

Military Standards - The project will used a set of military standards on the project. Military standards

typically employed include DOD-STD-2167, DOD-STD-2167A and DOD-STD-2168.

b. List the name(s) of these standard(s)

(SASET Software Documentation)

c. Were these standards tailored specifically for use on this effort?

(SoftCost-Ada: Degree of Standardization)
(SASET: Software Documentation)

B-7

PROJECT QUESTIONNAIRE 3
DEVELOPMENT METHODOLOGY

Untailored standards means that the project will be forced lo design, develop, and document software by

the book No waivers or deviations to the standards will be allowed I
d. List the name(s) of the software documents required

(SASET: Software Documentation) 3
3. Risk Management

a. Number and criticality of risk items

(Ada COCOMO Z Factor: Risk Elimination By PDR; not required by COSTMODL) 3
b. Risk Management Plan identifies all critical risk items, establishes milestones for resolving

them by PDR 3
(Ada COCOMO Z Factor: Risk Elimination By PDR)

c. Schedule, budget, and internal milestones through PDR compatible with Risk Management Plan 3
(Ada COCOMO E Factor: Risk Elimination By PDR)
(Ada COCOMO Z Factor." Design Thoroughness By PDR)

d. Tool support available for resolving risk items

(Ada COCOMO Z Factor: Risk Elimination By PDR) 1

4. Software Reviews 5
a. Select all informal reviews held on the software during this development

(SoftCost-Ada: Use of Peer Reviews) I
The following explanations are offered to assist with rating selections:

Quality Inspections/Audits - The project will have quality assurance independently inspect/audit the software 3
designs and code to ensure that they meet standards.

Design and code wallahroughs - The project will have software team members review each others' designs
and code using the concept of walkthroughs. Walkthroughs are informal meetings where team members I
review work and suggest ways to improve it. Walkthroughs are used to improve the quality of the product.

Design and code inspections - The project will have software team member review each others' designs and I
code using the concept of inspections. Inspections have the same objectives as walkthroughs, but tend to
be more formal. They are moderated (often by quality assurance) and feed-forward and feed-back the

B-8

I

PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

results of the review so that their lessons learned can be propagated throughout the project.

b. Select all management reviews held on the software for this project

(SoftCost-Ada: Use of Peer Reviews)
Management Reviews - Peer management reviews are employed to build the management team and to have
them help each other to solve problems and to manage risk.

5. System/Software Requirements

a. Select the option which corresponds to the level of definition and understanding of system
requirements

(SASET: System Requirements)

b. Select the option which corresponds to the level of definition and understanding of software
requirements

(SASET: Software Requirements)

c. How will overall technology changes impact the project?

(SASET: Technology Impacts)

d. Select the percentage of software requirements well established

(SoftCost-Ada: Requirements Volatility)
The following explanations are offered to assist with ratings selections:

Essentially no changes (>90%) - The software requirements are well defined and will change very little
during the course of the development. Requirements changes will be infrequent and under change control.

Over 60% of requirements are well established - More than 60% of the software requirements are well
established and will change slightly during the course of development. The remaining requirements will be
defined and placed under control by SSR. Requirements changes will be infrequent and under change
control.

Over 50% of requirements are well established - Between 50% and 60% of the software requirements are
well established and will change during the course of development. The remaining requirements will be
defined and placed under change control by SSR. Requirements changes will be frequent, bu: under change
control.

Over 30% of requirements are well established - Between 30% and 50% of the software requirements are
well established and will change during the course of development. The remaining requirements will be
defined and placed under change control between SSR and PDR. Requirements changes will occur

B-9

I
PROJECT QUESTIONNAIRE 3

DEVELOPMENT METHODOLOGY I
frequenty and will result in moderate to heavy rework Change control will be implemented, but will be
heavily taxed to keep up with the requirements changes.

Less than 30% of requirements are well established - Between 0% and 30% of the software requirements are
well established and will change during the course of development. The remaining requirements will be
defined and placed under change control by PDR. Changes to requirements will occur fairly frequently and
will require extensive rework. Change control will be implemented, but will be taxed to keep up with the
requirements changes. Some thrashing will occur as products have to be reworked to accommodate
requirements growth. !

e. System requirements baselined, under rigorous change control

(Ada COCOMO E, Factor: Requirements Volatility) 3
f. Level of uncertainty in key requirements areas: mission, user interface, hardware, other

interfaces 3
(Ada COCOMO E. Factor: Requirements Volatility)

g. Organizational track record in keeping requirements stable 3
(Ada COCOMO 7 Factor: Requirements Volatility)

h. Use of incremental development to stabilize requirements I
(Ada COCO.MO E, Factor: Requirements Volatility) 3
i. System architecture modularized around major sources of change

(Ada COCOMO E Factor.- Requirements Volatility)

j. Level of uncertainty in key architecture drivers: mission, user interface, hardware, COTS,
technology, performance 3

(Ada COCOMO Z, Factor: Design Thoroughness By PDR)

6. Commercial off-the-shelf software (COTS)

a. Select the option which best describes the expected impact of integrating commercial off-the- 3
shelf software into the system

(SASET COTS Software) 3
7. Use of Software Tools

B
B -10I

I

3 PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGY

a. Specify the type of environment that will be used to develop the software

I (SASET: Software Development Tools)
(SoftCost-Ada: Use of Software Tools/Environment)
The following explanations are offered to assist with rating selections:

Basic Ada Language Tools - The minimum set of Ada software development tools will be used by the
project. These tools typically include a text editor, compiler, linker/loader, and debugger.

MAPSE Plus Host Tools - A Minimal Ada Program Support Environment (MAPSE) will be used by the
project which as host tools but no back-end target tools (i.e., no cross development tools). A MAPSE
integrates the following types of tools into a software development environment: command language
interpreter, text editor, compiler, debugger, linker/loader, static analyzer, dynamic analyzer, pretty-printer, file
manager, and library.

MAPSE Plus Host/Target Tools - A MAPSE will be used by the project which has both host and back-end
target tools. In addition to a standard MAPSE, this type of Ada programming environment provides cross-
development tools which allow software to be written on the host and downloaded to the target after3- debugging has taken place.

APSE - An Ada Programming Support Environment (APSE) is richer in tools than a MAPSE because it
provides the following additional types of tools: documentation systems, configuration management systems,
project management sAstems, upper CASE and lower CASE tools.

Full Integrated, Life Cycle APSE - An APSE which provides an integrated set of tools will be used on the
project. This type of environment provides tools which are integrated with each other and the methods
which they automate to provide a seamless system which can be used to support software development from
start to finish.

3 b. Specify the type of tools that will be used to develop the software

(Ada COCOMO: Use of Software Tools)IThe following explanations are offered to assist with rating selections:

Basic microprocessor tools - Assembler, Basic linker, Basic monitor, Batch debug aids

3 Basic minicomputer tools - HOL compiler, Macro assembler. Simple overlay linker, Language independent
monitor, Batch source editor, Basic library aids, Basic database aids

3 Strong mini, Basic maxicomputer tools - Real-time or timesharing operating system, Database management
system, Extended overlay linker, Interactive debug aids, Simple programming support library, Interactive
source editor

Is Strong maxi, Stoneman MAPSE - Virtual memory operating system, Database design aid, Simple program
design language, Performance measurement and analysis aids, programming support library with basic CM3- aids, Set-use analyzer, Program flow and test case anahzer, Basic text editor and manager

IB

PROJECT QUESTIONNAIRE 3
DEVELOPMENT METHODOLOGY I

Advanced mad, Stoneman APSE - Full programming support library with CM aids, Full integrated
documentation system, Project control system, requirements specification language and anayzer, Extended
design tools, Automated verification system, Special-purpose tools: Crosscompilers, instruction set I
simulators, display fomzatters, communications processing tools, data entry control tools, conversion aids,
etc.

c. Tool support for developing and verifying Ada package specs I
(Ada COCOMO Z' Factor: Design Thoroughness By PDR) 3

8. Use of Modern Proeramming Practices

a. Degree to which modern programming practices are used in developing software 3
(Ada COCOMO: Use of Modern Programming Practices)
(Ada COCOMO Z Factor for Maintenance Model: Use of MPPs)
The specific practices included here are:

1. Top Down Requirements Analysis and Design. Developing the software requirements and design as
a sequence of hierarchical elaborations of the users' information processing needs and objectives. I
This practice is extended to include the appropriate use of incremental development, prototyping, and
anticipatory documentation.

a Structured Design Notation. Use of a modular, hierarchical design notation (program design
language, structure charts, HIPO) consistent with the structured code constructs in item 5.

3. Top Down Incremental Development. Performing detailed design, code, and integration a sequence I
of hierarchical elaborations of the software structure.

4. Design and Code Walkthroughs or Inspections. Performing preplanned peer reviews of the detailed 3
design and of the code of each software unit.

5. Structured Code. Use of modular, hierarchical control structures based on a small number of
elementary control structures, each having only one flow of control in and out. I

6. Program Librarian. A project participant responsible for operating an organized repository and
control system for software components. I

b. Ada Development Methodology

(SoftCost-Ada: Use of Modern Software Methods)The following explanations are offered to assist with ratings selections:

Structured Programming - The project will use traditional structure methods to analyze, design, develop, and
test the software (e.g., including structured analysis, structured design, top-down development, program
libraries, etc.) 3

B- 12 5

I

3 PROJECT QUESTIONNAIRE

DEVELOPMENT METHODOLOGYI
Object Oriented Design Plus Structured Programming - A project will use a combination of structured
programming techniques and Object Oriented Design (OOD). OOD is a techniques whereby a system is
partitioned into object, not functions.

Ada Packaging Methods - The project will use Ada packaging methods based on object-oriented techniques
I in which an object and its operations are located within a single package.

Integrated life-cycle methodology which exploits Ada reusability concepts - The project will use an integrated
set of object-oriented methods which enable its users to package the software to take full use of Ada's
structural, behavioral, performance, tasking and reuse features.

c. Maintenance Conformance to the Ada Process Model

(Ada COCOMO Z Factor for Maintenance Model: Conformance)

B- 13

I
PROJECT QUESTIONNAIRE

SOFTWARE SIZE

1. Size Estimates I
a. Number of CSCIs:

(SASET: Number of CPCIs)
Computer software (program) configuration items (CSCIs) are identified early in the requirements phase
along with hardware configuration items (HWCIs). Software CSCIs are complete, stand-alone, well-defined,
and completely testable items.

b. Identify counting convention which is used to provide requested sizing information in (c). 3
Counting conventions are recommended for the following models:

Model Convention 3
Ada COCOMO Body semicolons
SoftCost-Ada Terminal semicolons
SASET Terminal semicolons

Definitions for an Ada source line of code are as follows: 3
Physical lines - Any carriage return or line feed including comments and blank lines. Reusable code is
counted the first time it is instantiated.

Non-Comment, Non-Blank Lines - Physical lines excluding comments and blank lines.

Terminal Semicolons - A statement terminated by a semicolon, including data declarations, code used to
instantiate a reusable component, and the reusable component itself (the first time it was instantiated).
Comments, blank lines, and non-deliverable code are not included in the line count.

Essential Semicolons - Terminal semicolons excluding those used in a data declaration or formal parameter 3
lists.

Body Semicolons -A statement terminated by a carriage return in the specification and a terminal semicolon
in the body of an Ada program. Comments, blank lines, and non-deliverable code are not included in the I
line count.

c. Enter the requested sizing information below, in thousands of lines of source code (KSLOCs). I
(SoftCost-Ada: Ada Usage Factor)
(SoftCost-Ada: New, Reused, Modified Ada Components) I
(SoftCost-Ada: New, Reused, Modified Other Components)
(SASET: Primary Software Language)
(SASET: Programing Language)
(SASET: Direct Input for SLOC) I
Specify deliverable program or CSC, Number of lines of code for each code condition, language, and
software type. 3

B- 14 3

I

PROJECT QUESTIONNAIRE

SOFTWARE SIZE

Software Type can be system, application, support, or security. The code conditions (new, modified,
rehosted) are briefly defines as follows:

New code - This constitutes software code that is to be developed from scratch. Software requirements must
be determined, a design established, the design must be coded and units tested, and the system integration
must be tested

Modified code - This constitutes software code which has some development already complete and which
can be utilized in the software program under consideration. Inherited or legacy software are terms often
used for modified code. Generally, modified code at the very least needs to be retested and often some
redesign and recoding efforts are required.

Rehosted code - This consists of completed and tested software code which is to be transferred from one
computer system to another. The computer systems are functionally different to the point of requiring some
changes to existing code. Generaly, the code requires no requirement definition, little or no design
definition, and partial testing.

d. Reused software

(SoftCost-Ada: Reuse Benefits)
Specify the amount of software (design, code, tests, etc.) that will be incorporated into the project currently
being developed.

e. Number of delivered source instructions adapted from existing software to form the new product

% of adapted software's design modified in order to adapt it to new environment

% of adapted software's code modified in order to adapt it to new environment

% of effort required to integrate the adapted software into the new product and to test the
resulting product as compared to the normal amount of integration and test effort for software
of comparable size

(Ada COCOMO: Adapted Code)

2. Database Size

a. Database size

(Ada COCOMO: Database Size)
(SoftCost-Ada: Database Size)
Identify the relative size of the database represented as a percentage of the total program size. For example,
if the program is 10,000 source lines of code (delivered source instructions) and the database is less than
1,000 bytes, then the database is less than 10% of the program size. The percentage may exceed 100%.

B- 15

U
PROJECT QUESTIONNAIRE 3

PROJECT STAFFING

1. Staff Size/Availability

a. Staff availability 3
(SoftCost-Ada: Staff Resource Availability)
Identify the availability of staff required by the project that are available when needed to perform software

development activities. The nominal rating for this parameter is between 30% and 50% availability.

b. Percent of required top software architects available to project 3
(Ada COCOMO E Factor: Risk Elimination By PDR)
(Ada COCOMO E Factor: Design Thoroughness BY PDR)

c. Difficulty of staffing due to special training and clearances

(SASET: Personnel Resources) 3
2. Stiff Skill/Experience

a. Skill Level of Analysts

(Ada COCOMO." Anayst Capability)
(SoftCost-Ada: Analyst Capability)

I 'entify the relative capability of the analysts that will be used on the project. For example, a rating of the
bottom 15th percentile means that the analysts assigned to this project are, on average, ranked in the 15th
pircentile of all analysts (Le., 85% of all analysts are better qualified). The major attributes to be U
considered in the rating are:

Analysis ability 3
Efficiency and thoroughness
Ability to communicate and cooperate.

7 hese attributes should weight equally. The evaluation should not answer the level of experience of the I
.zalsts. The evaluation should be based on the capability of the analysts as a team rather than as

i. .dividual.

b. Skill Level of Programmers

(Ada COCOMO: Programmer Capability) I
Identify the relative capability of the programmers that will be used on the project. For example, a rating
of the bottom 15th percentile means that the programmers assigned to this project are, on average, ranked

in the 15th percentile of all programmers (Le., 85% of all programmers are better qualified). The major

attributes to be considered in the rating are:

* Programmer ability

B- 16

U

I

IPROJECT QUESTIONNAIRE

PROJECT STAFFING

Efficiency and thoroughness
• Ability to communicate and cooperate.

These attributes should weight equaly. The evaluation should not answer the level of experience of the
programmers. The evaluation should be based on the capability of the programmers as a team rather than
as individuals.

c. Average experience with similar applications

I (Ada COCOMO: Applications Experience)
(SoftCost-Ada: Applications Experience)
Identify the average experience the software team has had with applications of like type, size, and complexity.
Experience is based on the average of the entire project team, not any one individual. For example on a
team with 2 people: one person has 10 years application experience and one has 2 years experience, then
average = 6 years.

d. Average level of virtual machine experience of the project team developing the software module

(Ada COCOMO: Virtual Machine Experience)
For a given software system, the underying virtual machine is the complex of hardware and software that
the system calls upon to accomplish its tasks. For example:

& If the subsystem to be developed is an operating system, the underlying virtual machine is the
computer hardware

0 If the subsystem to be developed is a database management system (DBMS), the underlying virtual
machine generaly consists of the computer hardware plus an operating system.

Programming language is not considered part of the virtual machine.

e. Host Machine Expertise

(SASET: Hardware Experience)

f. Software Language and Operating System Expertise

I (SASET: Software Experience)

g. Experience with chosen development methodology

(SoftCost-Ada: Ada Methodology Experience)
Identify the average experience the software team has had with the development methodology (Le. object
oriented development, structural model) which will be used on the project. Experience is based on the
average of the entire team, not any one individual at the beginning of the project. The following
explanations are offered to assist with ratings selections:

B- 17

U

PROJECT QUESTIONNAIRE 3
PROJECT STAFFING

Just starting (less than 3 months) - The team will have no practical experience using new Ada methods and

will be unfamiliar with Ada concepts. They may be undergoing training. 3
Limited experience (3 - 6 months) - The team may be familiar with methods, but unable to take advantage

of them because they have less than 6 months of experience using them.

Experienced (6 - 12 months) - The team will be experienced with the language but will be unable to use its
underying software engineering concepts because their experience of less than a year is still too limiting.

Extensive Experience (1 - 2 years) - The team will be experienced with methods and will be able to use most I
of their capabilities to perform their work. Underlying principles are exploited.

Ada Pro (over 2 years) - The team will be staffed with Ada professionals who have over two years of 3
experience which qualifies them to take advantage of the language to its utmost.

h. Experience with Ada Process Model 3
(Ada COCOMO: Experience with Ada Process Model)
The Ada Process Model is a process model for software development to reduce project inefficiency when

large numbers of project personnel are working in parallel on tasks which are closely intertwined and I
incompletely defined. Features of the Ada Process Model include the following:

* Produce compilable, compiler-checked Ada package specifications (and body outlines), expressed in I
a well-defined Ada Program Design Language (PDL), for all top-level and critical lower-level Ada

components by the project's or increments PDR.

* Identify and eliminate all major risk items by PDR. I
" Use a phased incremental development approach with the requirements for each increment (called

a "build") stabilized by the build's PDR. I
• Use small up-front engineering and design teams, with expertise in software architecture, Ada, and

the applications domain. 3
• Use a project risk management plan to determine the approach for eliminating risk items by PDR,

and also to determine the sequence of development increments.

" Use intermediate technical walkthroughs in the early requirements and design phases.

• Use individual detailed design walkthroughsfor each component and technical wallahroughfor each U
build instead of a massive CDR.

* Use continuous integration via compiler checking of Ada package specifications and incremental

demonstration, rather than beginning integration at the end of unit test.

* Use bottom-up requirements verification via unit standalone tests, build integration tests, and 3
B- 18

I

PROJECT QUESTIONNAIRE

PROJECT STAFFING

engineering string tests.

" Provide well-commented Ada code and big-picture design information instead of massive as-built
Software Design Documents, which rapidly get out of date and loose their maintenance value.

" Use a set of consistent metrics tightly coupled to the project's Software Development Plan and its
build definitions to provide visibility into the code development process.

i. Project team's equivalent duration of experience (at the beginning on the projectibuild) with the
programming language to be used

(Ada COCOMO: Programming Language Experience)
(SoftCost-Ada: Ada Language Experience)
Identify the average experience the software team has had with the programming language. Experience is
based on the average of the entire team, not any one individual at the beginning of the project.

j. Number of Ada projects completed by team members

(SoftCost-Ada: Number of Ada Projects Completed)
Specify the average number of Ada software development projects completed by the development team. An
Ada project is defined as the delivery of a product, packaged and prepared using Ada concepts (Le., an
incremental build, a protoype, a software delivery, etc.). The average is based upon the entire team
including designers and senior analysts. If you are estimating an incremental development, reflect the
number of completed builds. For example, if this was the third build of your first Ada project, then you
would rate this factor as a 2 if none of your people have had Ada experience on previous projects.

k. Ada environment experience

(SoftCost-Ada: Ada Environment Experience)
Identify the average experience the analysts who are part of the team have had with the tools, equipment,
and facilities that are part of the development environment to perform similar software development tasks.
Base the number on the average of the entire team, not any one individual.

I. Level of product familiarity of the development team

(SASET: Development Team)

3. Teamwork Capability

a. Select the type of team used for software development

(SoftCost-Ada: Team Capability)
Identify the types of teams which will be used on the project. The following explanations are offered to
assist with rating selections:

B - 19

I

PROJECT QUESTIONNAIRE 3
PROJECT STAFFING

Design Teams - The software will be designed by a team of analysis who may not be involved in the
implementation. Personnel outside of the project may be called in to work specific problems and to
collaborate in the design.

Programming Teams - The software will be designed, developed, and tested by a team of analysts who are
involved in the project from its start to finish. Team reviews and approaches to development will be used
as the team leader keeps control of the software development activities.

Participatory Teams - The software will be designed, developed, and tested by a team of analysts who use
the consensus process to arrive at both technical and managerial decisions.

Interdisciplinary Teams - Both hardware and software personnel are collocated and work as a single team
to solve their individual and interdisciplinary problems on the project using the consensus process.

B
I
I
I
I
I
I
I
I
I

B -20 3

I

PROJECT QUESTIONNAIRE

COMPUTER SYSTEM

1. Development Environment

a. Number of different types of workstations

(SASET: Workstation Types)
A workstation is considered unique if it requires different screen clearing and set-up operations. This value
can range from 0 to 100.

b. Rate the virtual machine volatility of the development system, based on frequency of
major/minor changes

(Ada COCOMO: irtu,.l Machine Volatility - Host)
For a given software system, the underlying virtual machine is the complex of hardware and software that
the system calls upon to accomplish its tasks. For example:

If the subsystem to be developed is an operating system, the underlying virtual machine is the
computer hardware.

• If the subsystem to be developed is a database management system (DBMS), the underlying virtual
machine generally consists of the computer hardware plus an operating system.

Ratings which are defined in terms of relative frequency of major and minor changes are defined as follows:

" Major change: significantly effects roughly 10% of routines under development.

* Minor change: significantly effects roughly 1% of routines under development.

c. Select the following option that best assesses the embedded features of the development system

(SASET: Embedded Development System)

d. Rate the software tool/environment stability of the development system

(SoftCost-Ada: Software Tool/Environment Stability)
Identifies how stable the tools that will be used on the project are and how often changes in the
environment will be processed The following explanations are offered to assist with ratings selections:

Buggy Compiler - The project will use a compiler which has not been thoroughly debugged and does not fully
implement the full set of requirements set forth in the Ada Language Specification.

Stable Compiler, Unstable Environment - The project will use a compiler which has been fully debugged, but
does not fully implement all of the requirements of the Ada Language Specification. The tool environment
is unstable with changes occurring monthly. New tools or versions of old tools are being inserted into the
environment weekly.

Stable Compiler, Mature Environment - The project will use a compiler which has been fully debugged and

B - 21

I
PROJECT QUESTIONNAIRE 3

COMPUTER SYSTEM I
implements all of the requirements of the Ada Language Specification. The APSE is maturing with changes
occurring quartery. New tools or versions of old tools are being inserted into the environment monthly.

Stable Compiler, Stable Environment - The project will use a compiler which has been fully debugged and
implements all of the requirements of the Ada Language Specification. The APSE is stable with changes
occurring once a quarter. New tools or versions of old tools are being inserted into the environment
quarterly.

Stable Environment - The project will use a compiler which has been fully debugged, implements all of the
requirements of the Ada Language Specification, and is capable of supporting efficient tasking. The APSE U
is very stable with changes occurring semi-annually. New tools are being inserted into the environment
quarterly.

Mature, Stable Environment - The project will use a compiler which has been fully debugged, implements
all of the requirements of the Ada Language Specification, supports tasking and has been validated The
APSE is very stable with changes occurring semi-annually. New tools are being inserted into the
environment semi-annually with a minimum of disruption.

e. Address the difference between the development hardware system and the host system 3
(SASET: Development Versus Host System)

2. Target Computer Configuration I
a. Rate the virtual machine volatility of the target system, based on number of major/minor

changes 3
(Ada COCOMO: Virtual Machine Volatility-Target)
For a given software system, the underlying virtual machine is the complex of hardware and software that
the system calls upon to accomplish its tasks. For example: I
* If the subsystem to be developed is an operating system, the underlying virtual machine is the

computer hardware. 3
• If the subsystem to be developed is a database management system (DBMS), the underlying virtual

machine generally consists of the computer hardware plus an operating system. 3
Ratings which are defined in terms of relative frequency of major and minor changes are defined as follows:

* Major change: significantly effects roughly 10% of routines under development. 3
" Minor change: significantly effects roughly 1% of routines under development.

b. Identify the system architecture U
(SoftCost-Ada: System Architecture) 3

B - 22

I

PROJECT QUESTIONNAIRE

COMPUTER SYSTEM

(SASET: Hardware System Type)
Specify the architecture of the target computer system. If the target computer system will use multiple
processors, speciy the number of processors.

Centralized - The target computer system will use a single processor.

Tightly-Coupled - The target computer system will use multiple processors which are very ightly-coupled,
typically sharing a common pool of memory.

Loosely-Coupled - The target computer system will use multiple processors which are connected in a loosely-
coupled manner with each processor typically having its own memory resources.

Federated - The target computer system will use multiple functional processors which communicate via
either a common system-level bus or a communications channel. The key aspect of this type of architecture
is the term "functional processors". Each processor is dedicated to performing a specific function and passes
control and data information across the bus or communications channel to the other processors.

Distributed (centralized database) - The target computer system will use multiple, distributed computers,
sharing a common database, with the software distributed across these computers.

Distributed (distributed database) - The target computer system will use multiple, distributed computers, with
the software and the database(s) distributed across these computers.

3. Performance Requirements

a. Main Storage Constraint

(Ada COCOMO: Main Storage Constraint)
(SASET: Percent of Core Utilized)
Main storage refers to direct random access storage such as core, integrated-circuit, or plated-wire storage;
it excludes such devices as drums, disks, tapes, or bubble storage. Select the percentage which best reflects
the percentage of main storage expected to be used by the subsystem and any other subsystems consuming
the main storage resources.

b. Overall Hardware Constraints. Overall hardware refers to processor memory, I/0 capacity, and
throughput (Le. CPU speed) available within the target computer system.

(SASET - Hardware Constraints)
(SoftCost-Ada: Degree of Optimization)
Specify how much optimization must be performed to make the software run within the resource constraints
of the target computer system. The following explanations are offered to assist with rating selections:

Less than 50% of Available Resources Used - The target computer system has more than enough resources
available. The developer need no optimize to fit the software into memory or to execute it within required
time.

B - 23

I

PROJECT QUESTIONNAIRE

COMPUTER SYSTEM

A maximum of 75% of Available Resources are Used - When completed, the software will use no more than I
75% of the available computer resources. The developers need to perform only a minimal amount of
optimization to cause the software to run efficiently on the computer. 3
A maximum of 85% of Available Resources are Used - When completed, the software will use no more than
85% of the available computer resources. Resource restrictions will require the developers to perform some
optimization to tailor the software to memory or realize time restrictions.

A maximum of 95% of Available Resources are Used - The software, when complete, will use no more than
95% of the available computer resources. This would be the case when the target computer sstem has
severe resource restrictions which require the developers to use a variety of optimization techniques to ensure U
the software will run on the target machines.

Close to 100% of Available Resources are Used - The software, when completed, may exceed the available 3
computer resources. This represents an extreme case when the target processor has a fixed amount of
resources. The developers will be required to use a variety of optimization techniques, such as overlays, to
ensure that the software will run within these constraints. 3
c. Execution Time Constraints. Select the percentage which best reflects the percentage of available

execution time expected to be used by the subsystem and any other subsystems consuming the
execution time resource.

(Ada COCOMO: Execution Time Constraint)

d. Select the criteria which reflects the performance constraints of the software system

(SASET: Timing and Criticality) 3
4. Microprocessor Code

a. Percentage of software functions that are to be implemented in firmware I
(SASET: Percentage of Microprocessor Code)
Percentage is with respect to the total software job. Microprocessor code may be hosted on a chip such as: I
ROM, PROM, EPROM, or any other hardware used for storing executable microprocessor instructions. The
added complexity of downloading ("burning") and testing the microprocessor software increases the
development complexity. 3

I
3
I

B - 24

I
I

I
3 PROJECT QUESTIONNAIRE

DEVELOPMENT ENVIRONMENT

I. Project Orlanization

3 a. Number of organizations within the company significantly involved during the software
development

(SoftCost-Ada: Number of Organizations)
Specify the number of organizations directly involved in the software development effort. The following lists
examples of typical organizations included within this count:

U Software Development
Software Configuration Management
Software Quality Assurance
Software Project Management
Software Test (if independent)
Project Management
Project-level Configuration ManagementI_ Project-level Quality Assurance
System Engineering
System Test (if independent)
Independent Verification and Validation (IV&V)

Subcontractors and co-contractors should each be counted as one separate organization.

b. Scope of Support

(SoftCost-Ada: Scope of Support)IThe following explanations are offered to assist with ratings selection.

Liaison support - The software organization will occasionally be called upon to provide limited support toI iother project organizations (e.g., system test, project management, etc.). Support is provided primarily in
a review and working group capacity.

Extensive support to system test - The software organization will provide support to the system test
organization during the conduct of system-level testing (Le., hardware/softare integration and acceptance
testing). Support includes participation in planning executing, and documenting system-level tests.

IExtensive support to system engineering & system test - The software organization will provide extensive
support to many organizations involved in the project (e.g., members of system-level design and test teams,
developers if lCD 's, participants in system-level review, etc.). In addition, Cost Schedule Control Systems
Criteria (CISCSC) or Cost Schedule Status Report (CSSR) reports will be filed per customer requirements.
Such requirements generate a great deal of paperwork, in that, earned value must be computed, variances
tabulated, and technical performance documented on a periodic basis.

I c. Organizational Interface Complexity

3 (SoftCost-Ada: Organizational Interface Complexity)

3 B - 25

I

PROJECT QUESTIONNAIRE3

DEVELOPMENT ENVIRONMENT

Describe the interface complexity between organizations involved in the software development effort. The I
following explanations are offered to assist with rating selections:

Single Interface With Collocated Customer - The software will be developed by an organization which direct 3
interfaces with only one other organization. The customer is located in the same facility as the developing
organization.

Single Interface With Single Customer - The software will be developed by an organization which directly
interfaces with only a single, remote customer through the software project manager.

Multiple Internal and Single External - The software will be developed by an organization which interfaces N
with other organizations within the same company (Le., quality assurance, etc.) and the customer through
the software project manager. 3
Mutiple Internal and Single External Interfaces - The software will be developed by an organization which
interfaces with other organizations within the same company and multiple customers through different
personnel in the project management organization.

Multiple Geographically Distributed Interfaces - The software will be developed by an organization which
is geographically distributed and interfaces with other geographically dispersed organizations, customers, co-
contractors, and subcontractors through different personnel in the project management and marketing
organizations.

d. Number of locations at which software is developed 3
(SASET: Development Locations)
Enter a value between I and 100.

e. Number of customer locations

(SASET: Customer Locations) I
(SASET: Information Travel Requirements)

2. Computer Resources m

i.. Characterize the development facilities and the perceived availability of the hardware (terminals
and computers) 3

(SASET: Development Facilities)

b. Computer resource availability I
(SoftCost-Ada: Computer Resource Availability)
Identify, how available computer equipment and facilities are for the software development effort. The 3
following explanations are offered to assist with rating selections:

I
B - 26

I

PROJECT QUESTIONNAIRE

DEVIELOPMENT ENVIRONMENT

E.treme Equipment and Facility Limitations - Little if any of the computer resources required will be
available when needed by the project. Access to machines is difficult and machine time is limited.

Computer Shared and Remotely Accessible - The computer resources used for software development will be
located at some remove site and will be shared by multiple projects, thereby creating conflict over access.

Interactive Access to Dedicated Resources - The computer resources used for software development will be
dedicated to the project and will provide users with interactive access via terminals or workstations.

Dedicated Facilities With Multiple LAN-servers - The computer resources used for software development will
be dedicated to the project and will provide users with convenient access to a variety of machines, file
servers, and workstations via a Local Area Network.

Software Factory - The computer resources used for software development will be dedicated to the project,
convenient to use, and provide access to an ergonomically-designed, attractive Software Factory which uses
a variety of machines, workstations, and specialized Ada facilities to perfomi needed tasks.

c. Select the average time required to submit a job to be run until the results are back in the
developer's hand

(Ada COCOMO: Computer Turnaround Time)

3. Security and Privacy Restrictions

a. Classified Application

(Ada COCOMO: Classified Securit, Application)

b. Security Requirements

(SofiCost-Ada: Security Requirement)
Specif, the level of security requirements imposed on the software development effort. The following
explanations are offered to assist with rating selections:

Database Integrity - The only security' requirements imposed on the project will be those normal, imposed
to maintain database integrity and information privacy.

Physical Security - Security on the project will be handled via physical safeguards which include guards and
intrusion alarm .systems.

Demonstrably Correct Truated System - B Level trusted ilstent requirements and physical security safeguards
will he required on the project. Access controls must be demonstrated and certified by independent parties.

Verifiably Correct Trusted System - A Level trusted system requirements and physical security safeguards will
be required on the project. Security controls must be verified using sophisticated proof of correction
techniques.

B - 27

I
PROJECT QUESTIONNAIRE 3

DEVELOPMENT ENVIRONMENT I
c. Internal Computer System Security Safeguards

(SASET. Software Security)
Identify the software security controls that are designed to provide internal computer security safeguards.

I
I
I
I
I
I
U
I
I
I
I
I
I

B - 28

I

I

3 PROJECT QUESTIONNAIRE

RESOURCE ALLOCATION

I. Effort

a. Total Staff

Enter total staff months of effort end-to-end

b. Minimum Staff Size

c. For each software activity, please provide the total effort, by phase, in staff-months it took toIcomplete
d. Average No. of Hours per Staff Month

Default = 152 hours/month.

I

BI 2

I
I
I
I
I
I
I
I

(This Page is Intentionally Left Blank) I
I
I
I
I
N
I
I
I
I
I

I

APPENDIX C

STATEMENT PROFILER DEFINITIONS

Body Semicolons: A statement terminated by a carriage return in the specification and a terminal semicolon

in the body of an Ada program, including data declarations and code used to instantiate a reusable component

itself the first time it was instantiated. Comments, blank lines, and non-deliverable code are not included in
the line count.

Data Manipulation: Program text containing any of the following keywords: PUT, PUTLINE, GET,

GET_LINE, READ, WRITE

Data Typing: Program text containing any of the following keywords: TYPE, SUBTYPE

Essential Semicolons: Terminal semicolons excluding those used in data declarations or formal parameter

lists.

Exception: An exception is an error situation that may arise during program execution. To raise an exception

is to abandon normal program execution to signal that an error has taken place. An exception handler is a

I portion of the program text specifying a response to the exception. Execution of such a program text is called

handling the exception.

Generic: A generic is a template for a set of subprograms or for a set of packages. A subprogram or package

created using the template is called an instance of the generic unit. A generic unit is one of the kinds of
program unit.

Logical: Program text containing any of the following keywords: IF, CASE, LOOP, EXIT, ELSE, ELSEIF,

WHEN, GOTO.

Objects: Number of variables and constants.

Physical Lines: Any carriage return or line feed including comments and blank lines. Reusable code is

counted the first time it is instantiated.

Program Units: Number of subprograms, packages, generics, and tasks.

Mathematical: Program text containing any of the following keywords: +, -, MOD, REM, **, ABS

Task: A task is a program unit which operates in parallel with other parts of the program.

Tasking: Program text containing any of the following keywords: SELECT, ACCEPT, ABORT,

TERMINATE

Terminal Semicolons: A statement terminated b, a semicolon, including data declarations, code used to

instantiate a reusable component and the reusable component itself the first time it was instantiated. When

multiple semicolons are user within a declaration statement, the terminating semicolon is used to define the

termination of a source line of code. For example, a package specification which included a statement that

spans ten lines and is terminated by a single semicolon would count as one ASLOC. Comment, blank lines,

and non-deliverable code are not included in the line count.

I
C-i

U
I
I
U
I
I
I
I

(This Page is Intentionally Left Blank)

I
I
I
I
I
I
I
I
I
I

APPENDIX D

DERIVATION OF FUNCTION POINT COUNT FOR THE
REAL-TIME CSCI OF THE UH-1 FLIGHT SIMULATOR

This attachment contains a description of how function point parameters were counted for the Real-
Time CSCI of the UH-1 helicopter flight simulator, excluding diagnostics and other support software.
Counting conventions are presented by parameter type:

* External Inputs
• External Outputs
* Logical Internal Files
• External Inquiries
* External Interfaces.

There are ambiguities with regard to the function point analysis for training devices. Our resolution
and interpretation of the guidelines is presented here. For each parameter type the description of how counts
were derived contains the following information:

0 Key points - a summary of the basic parameter definition with emphasis of
certain key factors.

0 Potential types within the UH-1 FS - situations in which elements were
counted as this parameter type.

0 Description - an annotated listing of each parameter that was counted and
the complexity, level that was assigned.

0 Total number of element types - total count of elements for the specified
parameter.

D-I

I
EXTERNAL INPUTS

Key Points:

• User data or user control information that enters the external boundary of the application
• It must change something inside the system
* It is unique if it has a different format or requires different processing logic I

Potential Types Within the UH-I FS

Trainee Station: I
* Cockpit Controls and Panels n

Instructor Operator Station:

• Instructor PanelsInitial Conditions
* Malfunctions Initiated by the Instructor

Description Complexity U
Trainee Station Inputs:

Cockpit Instrument Panel (pp. 82,83 SRS, Vol 1)

Note: Fire Detector Test Switch and Fuel Gauge Test Switch were counted as inquiries. I
1. Pressure Altimeter Low

a. Barometric Pressure I
2. Marker Beacon Low

a. Power Switch
b. Sensing Switch
c. Volume Control

3. Course Indicator Low I
a. Course Set Knob

4. Radio Magnetic Indicator Low 3
a. Set Heading Control
b. ADF/VOR No. 1 Bearing

Pointer Control
c. Compass Slaving Switch

Engine Panel 3
1. Low RPM Audio On/Off Low
2. Fuel Main On/Off Low
3. Int Aux Fuel Left/Off Low I

D-2

U

4. Int Aux Fuel Right/Off Low
5. De-Ice On/Off Low
6. Governor Auto/Emer Low

Chip Detector Panel

Note: Chip Detect Transmission/Tail Rotor Switch was counted as an inquirey.

1. Force Trim On/Off Low
2. Hydraulic Control On/Off Low

Lightin. Panels

1. Instrument Lighting Panel Low

a. Instrument Console Lighting Control
b. Instrument Pedestal Lighting Control
c. Instrument Secondary Lighting Control
d. Instrument Engine Lighting Control
e. Pilot Lighting Control
f. Co-Pilot Lighting Control

2. Dome Lights Panel Low

a. Dome Lights White/Off/Red Switch
b. Pitot Heater On/Off Switch

3. Exterior Lights Panel Low

a. Exterior Lights Steady/Flash Switch
b. Exterior Lights DimiBright Switch
c. Anti-Collision Lights On/Off Switch

DC and AC Power Panels

1. DC Power Panel LOw

Note: DC Voltmeter Selector Switch was counted as an inquirey.

a. Main Generator Reset/On/Off Switch
b. Battery On/Off Switch
c. Starter Gen Switch
d. DC Power Manual On/Normal On Switch

2. AC Power Panel Low

Note: AC Power Phase Selector was counted as an inquirey.

a. Invertor Spare/Main Switch

3. DC Circuit Breaker Panels Average

D-3

U
a. DC Circuit Breakers 3

4. AC Circuit Breaker Panel Low

a. AC Circuit Breakers

Radio Set Control Panels 3
FM Radio Set Control Panel Low

a. Mode Selector Switch i
b. Megahertz Control
c. Kilohertz Control 3

2. UHF Radio Set Control Panel Low

a. Function Selector Switch I
b. Mode Selector Switch
c. Preset Channel Control
d. Ten Megahertz Control
e. One Megahertz Control
f. Five-hundredths Megahertz Control

3. VHF Radio Set Control Panel Low

a. Power Switch
b. Megahertz Control I
c. Kilohertz Control

4. VHF Navigation Set Control Panel Low 3
a. Power Switch
b. Megahertz Control
c. Kilohertz Control

5. ADF Control Panel Low

a. Mode Selector Switch I
b. Band Selector Switch
c. Tune Control
d. Loop L-R Switch

6. TACAN Radio Set Control Panel Low

a. Function Selector Switch
b. Mode Selector Switch
c. Channel Select Control
d. Bit push button

7. Signal Distribution Panel Low

D-4

I

a. FM Receiver Switch
b. UHF Receiver Switch
c. VHF Receiver Switch
d. INT Switch
e. NAV Switch
f. Transmit-Interphone Selector Switch

Miscellaneous Panels

1. Miscellaneous Control Panel Low

a. Wiper Select Pilot/Co-Pilot Switch
b. Wiper Speed Select Switch

2. Cabin Heating Panel Low

a. Bleed Air Select Switch
b. Aft Outlet Select Switch

IFF Transponder Set Control Panel

Note: Master Control Off/Stby/Low/Norm/Emer Switch was counted as an inquirey.

Problem Control Panel

Note: INSTR CALL was counted as an inquiry.
Motion Controls are implemented completely in hardware and have no software impact.

3. Turbulence Level (via Select Thumbwheel) Low

Collective Pitch Control Lever

1. Collective Pitch Lever Deflections Average
2. Throttle Position Average
3. Engine Idle Stop Release Switch Low
4. Starter-Ignition Switch Low
5. Governor RPM Switch Low

Cyclic Control Stick

1. Lateral and Longitudinal Cyclic Deflections Average
2. Force Trim Push Button Switch Low

Pilot/Copilot Anti-Torque Pedals

1. Directional Pedal Position Average

D-5

I
Instructor Operator Station (lOS) Inputs: 1

Trainee Station Control Panel (p. 36, SRS, Vol 1)

Note: Motion Controls are implemented completely in hardware and have no software impact.
Hardcopy Controls are counted as inquiries
ACK STUD push button was counted as an inquirey.

Mode Controls Low I
a. SEMI AUTO push button

2. Graphic Display Controls Low

Note: G TRK scaling, FULL SCALE AS, and FULL SCALE ALT were counted as inquiries.

a. G TRK ERASE push button
b. PLOT AREA RCL push button
c. AREA SEL thumbwheel switch
d. GCA COMM push button

3. Intercom Controls Low 3
Note: Speaker and Volume Intercom controls are implemented in hardware and have no software

impact.

a. HDST A push button
b. HDST B push button

4. Playback Controls Average n
a. MIN SEL Thumbwheel
b. RESET push button
c. IN PROG push button I
d. SLOW TIME push button
e. PAUSE push button

5. Malfunction Controls Average n
a. SEL Thumbwheel
b. INSR push button
c. INHB RMV push button
d. MALF push button (located on Problem Control Panel)
e. Select Thumbwheel (located on Problem Control Panel)

6. Crash Override Mode Controls Lowa. CRASH OVRD push button Trainee Station Control Panel

7. Simulation Freeze/Continue Controls Low i
a. PROB FRZ push button Trainee Station Control Panel
b. FRZ push button Problem Control Panel
c. CONT push button Problem Control Panel n

8. Reset Simulation to System Start-Up Conditions Low
a. PROB RESET push button Trainee Station Control Panel

D-6 I
I

I
b. RESET push button Problem Control Panel

9. Automatic Copilot Mode Controls Low
a. Enable AUTO COPILOT push button Trainee Station Control Panel
b. Disable AUTO COPILOT push button Problem Control Panel

Auxiliary Information Display (AID) Control Panel

Note: The following controls were counted as inquiries:

Display Area Select Controls

Transfer Cockpit Area to Edit Area Controls

The following controls were counted as outputs:

* Display Select Controls
i Display/Edit Format Select Controls

1. AUX MODE push button Low

2. Parameter Control Average

a. FLT PRMTR FRZ push button
b. FLT PRMTR RSTRE push button

Communications Control Panel

1. CM AUDIO NET push button Low
2. MON STUD HDST push button Low
3. ATC push button Low
4. Transmit push buttons LOw

a. UHF push button
Sb. VHF FM push button
c. VHF NAV push button
d. ICS push button

Instructor Initiated Malfunctions (described in MMR pp. 243-257)

Note: Similar malfunctions are grouped. Groupings are based on Object Interface Diagrams
presented in the preliminary design.

1. Malfunctions Affecting Tail Rotor Forces and Moments Low

a. Tail Rotor Gearbox (Group 3 Flight Malfunctions)

2. Malfunctions Affecting Flight Controls Low

Flight Malfunctions (Group 3)

a. Tail Rotor Loss

D-7

b. Tail Rotor Thrust
c. Tail Rotor Fixed Pitch i

3. Malfunctions Affecting Weight and Balance Low

a. Tail Rotor Gearbox (Group 3 Flight Malfunctions)

4. Malfunctions Affecting Electrical Power System High

Electrical System Malfunctions (Group 4)

a. Complete Electrical Failure I
b. Main Generator
c. Standby Generator
d. Main Invertor I
e. STBY Invertor

Indicator Circuit Breaker Malfunctions (Group 5) 3
a. Attitude Indicator Pilot #1 CB, OA
b. Attitude Indicator Pilot #2 CB, OC
c. Attitude Indicator Copilot #1 CB, OA i
d. Attitude Indicator Copilot #2 CB, OC
e. Course Direction Indicator CB
f. Gyrocompass CB I
g. Turn-and-Slip Indicator
h. Engine and Transmission Temp CB
i. Fuel Quantity Indicator CB
j. Fuel Pressure Indicator CB n
k. Engine Oil Pressure Indicator CB
1. Transmission Oil Pressure Indicator CB
m. Torquemeter CB I
n. Nonessential Bus VM CB

Navigation/Communication Circuit Breakers (Group 6)

a. VHF Transceiver CB
b. UHF Transceiver CB
c. FM Transceiver CB
d. Intercom - Pilot CB
e. Intercom - Copilot CB
f. IFF Transponder CB I
g. ADF Compass CB
h. VHF Navigation Receiver CB
i. Marker Beacon CB

Illumination Circuit Breaker (Group 7)

a. Instrument Panel Lights CB 1
b. Utility Lights CB
c. Dome Lights CB
d. Caution Lights CB I

D-8

____ I

I.

I e. Instrument Secondary Lights CB
f. Console and Pedestal Lights CB
g. Generator Reset CB
h. Invertor Control CB
i. Main Invertor Power CB
j. Spare Invertor Power CB
k. Alternating Current (AC) 115-Volt Relay CB
1. AC 115-Volt 28-Volt Transformer CB

Miscellaneous Circuit Breaker (Group 8)

a. Starter Relay CB
b. Ignition System CB
c. Governor Control CB
d. Engine Anti-Ice CB
e. Idle Stop Release CB
f. Fuel Valve CB
g. Right Fuel Boost Pump CB
h. Hydraulic Control CB

i. Force Trim System CB
j. Pitot Heater CB
k. RPM Limit Warning CB
1. Fire Detect CB

I 5. Malfunctions Affecting Caution Advisory Panel Low

a. Master Caution Light (Group 4 Electrical System Malfunctions)

6. Malfunctions Affecting the Fuel System Low

a. Fuel Quantity Indicator (Group I Indicator Malfunctions)
b. Fuel Pressure Indicator (Group 1 Indicator Malfunctions)
c. Left Fuel Boost Pump (Group 4 Electrical System Malfunctions)
d. Right Fuel Boost Pump (Group 4 Electrical System Malfunctions)

7. Malfunctions Affecting the UHF Radio Low

a. UHF Transceiver (Group 4 Electrical System Malfunctions)

8. Malfunctions Affecting the FM Radio Low

a. FM Transceiver (Group 4 Electrical System Malfunctions)

9. Malfunctions Affecting VHF Communications Low

a. VHF Communications Transceiver (Group 4 Electrical System Malfunctions)

10. Malfunctions Affecting VHF Navigation Low

a. Glide Slope Needle (Group 1 Indicator Malfunctions)
b. VHF Navigation Receiver (Group 4 Electrical System Malfunctions)
c. Marker Beacon Receiver (Group 4 Electrical System Malfunctions)

ID-9

I

11. Malfunctions Affecting the ADF Radio Low

a. LF-ADF Receiver (Group 4 Electrical System Malfunctions)

12. Malfunctions Affecting the Engine Power Train Low I
Engine/Transmission Malfunctions (Group 2)

a. No Start
b. Short Shaft Failure
c. Inlet Guide Vane Actuator

13. Malfunctions Affecting the Engine Gas Generator Average

Engine/Transmission Malfunctions (Group 2) I
a. Engine Fuel Pump
b. Flameout/total engine failure
c. Hot Start
d. Hung Start
e. Short Shaft Failure
f. Compressor Stall
g. Governor RPM Increase/Decrease Switch
h. Inlet Guide Vane Actuator

i. Governor, Low Side
j. Governor, High Side
k. Droop Compensator
1. Engine Tachometer Generator

14. Malfunctions Affecting Engine Lubrication LOw

a. Transmission Oil Loss - Abrupt (Group 2 EngineTransmission Malfunctions)I
b. Transmission Oil Loss - Gradual (Group 2 Engine/Transmission Malfunctions)
c. Engine Fire (Group 2 Engine/Transmission Malfunctions)
d. Engine Chip Detector Light (Group 4 Electrical System Malfunctions)
e. Chip Detector Light (Group 4 Electrical System Malfunctions)

15. Malfunctions Affecting the Control Loading System Low

Flight Malfunctions (Grcup 3)

a. Tail Rotor Thrust
b. Lateral Cyclic
c. Lateral Cyclic Hardover
d. Longitudinal Cyclic H o
e. Longitudinal Cyclic Hardover
f. Total Hydraulics Failure

16. Malfunctions Affecting the Motion System Low

Flight Malfunctions (Group 3)

D - 10I

D-1O

I= i II I II I I II

I

a. Main Rotor Blade Track
b. Main Rotor Blade Balance
c. Tail Rotor Track

17. Malfunctions Affecting Instruments Low

Indicator Malfunctions (Group 1)

a. Attitude Indicator - Pilot
b. Attitude Indicator - Copilot
C. Turn Needle
d. Gyromagnetic Compass Heading Indicator
e. Gyromagnetic Compass - Slave Failure
f. Pitot System Failure (icing)
g. N, Tachometer
h. Rotor Tachometer Generator
i. Torquemeter
j. Engine Oil Temperature Indicator
k. Engine Oil Pressure Indicator
1. Transmission Oil Temperature Indicator
m. Transmission Oil Pressure Indicator
n. Fuel Quantity Indicator
o. Fuel Pressure Indicator

Initial Conditions and Flight Parameters

1. Initial Conditions Average

a. Altitude
b. Airspeed
c. Mag Heading
d. Roll
e. Pitch
f. Yaw

h. Turn Rate

i. Torque Pressure
j Rotor RPM
k. Latitude
1. Longitude
m. Fuel Weight
n. Center of Gravity
o. Gross Weight
p. Barometric Pressure
q. Outside Air Temperature
r. Wind Velocity
s. Wind Direction
t. Turbulence Level
u. Sound Level
v. Radio Static Level
w. Aux Power Unit
x. Fuel Burn Multiplier

D-11

2. Flight Parameters Average 3
Total Number of UH-I FS External Inputs LO ____ HigIL__w Average Hg

Trainee Station Inputs: 32 5 0 a
Instructor Operator Station (OS) Inputs: 28 6 1

TOTAL: 60 11 1 1

I
I
I
I
I
I
I

I
I

I

I

EXTERNAL OUTPUTS

Key Points:

• User data or user control information that leaves the external boundary of the application
measured

• It is unique if it has a different format or requires different processing logic
• It does not include output response of an external inquiry

Potential Types Within the UH-I FS

• Auxiliary Displays
* Maps
* Map Components
• Indicator Displays
* Station Identifiers

Description Complexity

Map Displays - Problem Status Display Area (pp. 65-73)

1. Problem Status Information High
Display
a. Training Mode Group
b. Air Traffic Control Group
c. Instructor Alerts Group
d. Environmental Conditions Group
e. Malfunction Status Group

Map Displays - Graph Area (pp. 65-73)

1. Air Speed Graph Low
2. Altitude Graph Low

Map Displays - Map Plot Area (pp. 65-73)

1. Cross Country Map Average
2. Approach Map Average
3. GCA Graph Average
4. GCA Information Average

a. Aircraft Identification
b. Heading
c. Position Relative to Course
d. Range
e. Altitude

Map Components (pp. 65-73)

1. Ground Track Low

D- 13

2. Event Symbols Low 3
Auxiliary Information Display (pp. 51-53)

1. Flight Parameter List Low I
2. Initial Condition Sets LOw
3. Malfunction Tables Low
4. Radio Navigation Lists Low 3
5. Stored Plots Low

Cockpit Indicator Display I
Note: No outputs since this display repeats selected cockpit information for view by the instructor.

Cockpit Instrument Panel (p. 82,83, SRS, Vol 1)

Note: The following warning indicators were counted as malfunctions:

* Engine Air Filter Light*
* RPM Warning Light*
* Fire Warning Indicator Light*

1. Airspeed Low
2. Pitch Low
3. Bank Low U
4. Pressure Altitude Low
5. Fuel Pressure Low
6. Fuel Quantity Low
7. Engine Oil Pressure Low
8. Engine Oil Temperature LOw
9. Engine RPM Low
10. Rotor RPM Low
11. ID 998 Synchronizer Angle Low
12. Main Generator Load Low
13. DC Voltage Average i

a. Battery
b. Main Generator
c. Standby Starter-Generator
d. Essential Bus
e. Nonessential Bus

14. Standby Generator Load Low
15. AC Voltage Low U

a. AB
b. AC
c. BC 3

16. Master Caution Enable/Disable LOw
17. Gas Producer RPM LOw
18. Exhaust Gas Temperature Low
19. Vertical Velocity Low I
20. Torque Pressure Low
21. Transmission Oil Pressure Low
22. Transmission Oil Temperature LOw U

D- 14

I

23. Turn Rate Low
24. Slip Low
25. Magnetic Heading* Low
26. Outside Air Temperature Low

Note*: Not listed in Figure 3.4-25 of SRS but shown in Figure 3.4-23.

Trainer Status Information Display (p. 83, no's. 31-36, SRS, Vol 1)

Note: INSTR ACK was counted as an inquiry.

1. PROB FRZ indicator light Low
2. MTN OFF indicator light LOw
3. AUTO COPILOT indicator light Low
4. TRNR READY indicator light Low
5. PLAY BACK ON indicator light LOw

Problem Control Panel (pp. 90-92)

1. SLOW indicator Low
2. IN PROG indicator Low

Caution/Advisory Indicators (page 93 of SRS, Vol 1)

Note: The RESET/TEST illumination will be performed by stimulating the hardware directly.

Note: These were already counted as outputs (see Attachment A), or associated with a malfunction
which was counted as an input.

• Engine Oil Pressure
• Engine Chip Detect
• Left Fuel Boost
* Right Fuel Boost
* Engine Fuel Pump
• 20 Minutes Fuel
* Fuel Filter
* Gov Emer
* Aux Fuel Low
• XMSN Oil Pressure
* XMSN Oil Hot
• Hydraulic Pressure
* Engine Inlet Air
* Inst Invertor
* DC Generator
* External Power
* Chip Detector
• IFF

Station Identifiers

1. Marker Beacon Signal LOw

D- 15

I
Localizer Signal Low

3. VOR Signal Low

4. ADF Signal Low

Other I
Note: The temporary hydraulics malfunction provides feedback forces to the collective, cyclic, and pedals. g
1. Cyclic Average
2. Pedals Average
3. Collective Average
4. DC Circuit Breakers Average
5. AC Circuit Breakers Low
6. ADF Radio Tuning Meter Low

PositionI7. Touchdown/Crash Condition Average

Total Number of UH-I FS External Outputs 5
Low Average

TOTAL: 47 10 1

I
I

I

I

I
I
I

D- 16

I

LOGICAL INTERNAL FILES

Key Points:

• A logical internal file is each logical group of data that is generated, used, and maintained
by the application.

• Logical internal files are accessible to the user through external input, output or inquiry type
* Databases are logical internal file types.
• The user must be aware that the file exists ie., the file is not implementation dependent.

Potential Types Within the UH-1 FS

• Runtime Data Bases

Description Complexity

Runtime Data Bases

Note: Malfunction Tables, Radio Navigation Lists, and Map Files were brought over via courseware
files and cannot be edited. Therefore, they were not counted as Logical Internal Files.

1. Initial Condition Sets Average
2. Flight Parameters Average

Other

1. Stored Plots Low
2. Playback Information High

Total Number of UH-1 FS External Interfaces

LOw Average igh

Runtime Data Bases: 0 2 0
Other: 1 0 1

TOTAL: 1 2 1

D- 17

I
EXTERNAL INQUIRIES 3

Key Points 1

* Each unique input output combination
Cause and generate an immediate output I

• Causes no change to internal data
• Do not count a soft key as an inquiry if it generates a picture that was counted as an external

output. 3
Potential Types Within the UH-I FS

* Graphic Display Controls i
* Auxiliary Information Display Controls
* Test Switch

Other U
The following unique input/output combinations were counted for the UH-1 FS. The "input" part of

the combination is numbered under the category heading, Input. The numbers correspond to values under
the heading Result, to show each unique pair. The complexity of the input/output combination is listed with
the input part of the combination. 3

Description Complexity

INPUT 3
Timer/Display Control Panel (pp. 62-65)

1. Cockpit Display Select Controls Low I
a. I push button
b. 2 push button

2. Display to Student Low
a. 1 push button
b. 2 push button 3

3. Timer Low
a. Start/Stop
b. Reset

Trainee Station Control Panel (pp. 38-40)

Graphic Display Controls:

1. Scaling push buttons Low
a. G TRK 12.5 x 12.5
b. G TRK 25 x 25
c. G TRK 100 x 100

2. FULL SCALE AS LOw

D- 18

I I

3. FULL SCALE ALT Low

4. Hard Copy (p. 34)
a. PRINT PLTR SMY Low
b. PRINT PROC SMY LOw

Auxiliary Information Display (AID) Control Panel (pp 43-53)

Note: The following Display Select Controls -
a. GCA push button
b. CROSS CNTRY push button
c. AREA push button, and
Display/Edit Format Select Controls -
a. FLT PARAM push button
b. FAIL push button
c. INIT COND push button
d. STORED PLOTS push button
e. RADIO NAV push button
were counted as outputs.

1. Display Area Select Controls LOw
a. EDIT AREA push button
b. CKPT 1 AREA push button
c. CKPT 2 AREA push button
d. CKPT 3 AREA push button
e. CKPT 4 AREA push button

2. Transfer Cockpit Area to LOw
Edit Area Controls
a. 1 push button
b. 2 push button
c. 3 push button1 d. 4 push button

Test Switch

1. Fire Detector Test Switch (p. 82) LOw
2. Fuel Gauge Test Switch (pp. 82, 86) Low
3. Chip Detector Switch (P. 89) Low

Problem Control Panel

1 1. INSTR CALL push button LOW

IFF Transponder Set Control Panel (MMR, p. 181)

1. Transponder Master Control Low
Switch

3AC Power Panel (p. 94)

SD- 19

I

I
1. AC Power Phase selector Low

DC Power Panel (p. 99)

1. DC Voltmeter selector switch Low I
RESULT 1

Timer/Display Control Panel

1. Repeater Instruments show readings for the selected cockpit. Cockpit Select Indicators will be
illuminated based on which selection was made at the Timer/Display Control Panel.

2. Allows Cockpit CRT display within a cockpit.
3. Timer display is controlled by Start/Stop and Reset buttons.

Trainee Station Control Panel I
1. Approach Map is displayed at the selected scale.
2. Airspeed Graph is enlarged.
3. Altitude Graph is enlarged.
4. (unknown)

Auxiliary Information Display Controls j

1. Allows selection of cockpit areas in the display area of the AID.
2. Transfers a display from the display area of the AID to the edit area of the AID. I

Test Switch

1. Causes Fire Warning Light to Illuminate while depressed. i
2. Causes Fuel Quantity Indicator to move from actual reading to

lesser reading.
3. Indicates the trouble area when the Chip Detector caution

light is illuminated.

Problem Control Panel 3
1. ACK STUD push button flashes.

IFF Transponder Set Control Panel i
1. Transponder mode is displayed at the Problem Status Display.

AC Power Panel

1. Permits monitoring of any one of the three phases (AB, AC, and BC) on the AC Voltmeter. 3
DC Power Panel

1. Permits monitoring of voltage being delivered from any of the following sources: Battery, Main n

D -20 3

I

j Generator, Standby Starter-Generator, Essential Bus, Non-Essential Bus.

j Total Number of UH- I FS External Inquiries

LOW Avrae High

ITOTAL: 17 0 0

DI 2

EXTERNAL INTERFACES3

Key Points:3

* Files passed or shared between applications should be counted as external interface types3

Potential Types Within the UH-1 FS

6 Data files from the ACS

Description Complexity

1. Courseware Files High5

Total Number of UH-1 FS External Interfaces L WA ea eH g

Other: 0 0 13

TOTAL: 0 0 1

D - 22

FUNCTION POINTS CALCULATION

Function Count:

Description

Low Average High Total

External Input 60 x 3 = 180 1Ix 4 = 44 Ix 6= 6 230
External Output 47x 4 = 188 10x 5 = 50 x 7= 7 245
Logical Internal 1 x 7 = 7 2 x 10 = 20 1 x 15= 15 42
Ext Interface File 0 x 5 = 0 Ox 7 = 0 .x10= 10 to
External Inquiry 17 x 3 = 51 Ox 4 = 0 0 x 16 = 0 51

Total Unadjusted Function Points (FC): 578

General Information Processing Function

Characteristic Degree of Influence Value

1. Data Communications 4
2. Distributed Functions 5
3. Performance 4
4. Heavily Used Configuration 3
5. Transaction Rate 3

6. Online Data Entry 1
7. End User Efficiency 3
8. Online Update 4
9. Complex Processing 3
10. Reusability 2
11. Installation Ease 4
12. Operational Ease 3
13. Multiple Sites 4
14. Facilitate Change 1

Total Degree of Influence (TDI): 44I__
GCA General Info. Proc. Func. Adj. = 0.65 + (0.01 x TDI) = 1.09

FP Function Points Measure = FC x GCA = 630.02

LEX Ada Language Expansion Factor = - 71

SLOC Source Lines of Code Count = FP x LEX = 44.731

I

I D-23

ATTACHMENT A

EXTERNAL OUTPUTS FOR COCKPIT INSTRUMENT PANEL

Output Output Device S
I. AC Voltage • AC Voltmeter

I lnst Invertor Caution Light
2. Pitch * Attitude Indicator
3. Bank * Attitude Indicator
4. Airspeed * Airspeed Indictor

- Airspeed Linear Indicator I
5. DC Voltage * DC Voltmeter
6. Rotor RPM - Dual Tachometer

* Rotor RPM Linear Indicator
7. Engine RPM * Dual Tachometer

* Engine RPM Linear Indicator
- Low RPM Audio

8. Engine Oil Pressure - Engine Oil Pressure Indicator
- Engine Oil Pressure Caution Light

9. Engine Oil Temperature * Engine Oil Temperature Indicator
10. Exhaust Gas Temperature o Exhaust Gas Temperature Indicator

o Exhaust Gas Temperature Linear Indicator

11. Fuel Quantity * Fuel Quantity Indicator
o Minutes of Fuel Remaining Digital Readout I
- 20 Minute Fuel Remaining Caution Light
- Auxiliary Fuel Low Caution Light

12. Fuel Pressure - Fuel Pressure Indicator
13. Gas Producer RPM * Gas Producer Tachometer

• Gas Producer Linear Indicator
14. Main Generator Load - Main Generator Loadmeter
15. Magnetic Heading * Radio Magnetic Indicator !
16. Master Caution Enable/Disable - Master Caution Light
17. Outside Air Temperature * Outside Air Temperature Indicator
18. Pressure Altitude - Barometric Pressure Altimeter I

o Altitude Digital Readout
19. ID 998 Synchronizer Angle * Radio Magnetic Indicator
20. Standby Generator Load * Standby Generator Loadmeter
21. Torque Pressure * Torquemeter U

* Torque Pressure Linear Indicator
22. Transmission Oil Pressure - Transmission Oil Pressure Indicator

o Transmission Oil Pressure Caution Light I
23. Transmission Oil Temperature * Transmission Oil Temperature Indicator

* Transmission Oil Hot Caution Light
24. Slip o Turn & Slip Indicator
25. Turn Rate (Yaw) - Turn & Slip Indicator
26. Vertical Velocity • Vertical Velocity Indicator

• Vertical Velocity Linear Indicator 3

I
D -24I

I

I
jAPPENDIX E

DERIVATION OF FUNCTION POINT COUNT FOR THE
AUTOMATED COURSEWARE SYSTEM

IThis attachment contains a description of how function point parameters were counted for the
Automated Courseware System (ACS). The Automated Courseware System (ACS) software is the component
providing the capability to develop and modify trainer courseware via the Automated Courseware workstation.
The ACS provides for the formulation and editing of UH-l FS mission scenarios consisting of navigational
aides, initial operating conditions, and real-time maps.

The ACS is divided into two CSCs: 1) the ACS CSC, and 2) Map Preview CSC. The ACS CSC is
the software for all the courseware data entry tasks. It is activated from the system main menu whenever
courseware modifications are to be made. Running the ACS CSC results in the creation of a courseware
floppy. The Courseware Loader must be run to read the ACS courseware floppy and create real-time format
data tables. Having loaded the courseware files, the Map Preview CSC can be used to view the map displays.
When viewing is complete, pressing Control-Q (̂ Q) quits the program and returns the user to the ACS main
menu.I

Counting conventions are presented by parameter type:

* External Inputs
• External Outputs
* Logical Internal Files
* External Inquiries
* External Interfaces.

For each parameter type the description of how counts were derived contains the following
information:

0 Key points - a summary of the basic parameter definition with emphasis of
certain key factors.

a Potential types within the UH-1 FS - situations in which elements were
counted as this parameter type.
Description - an annotated listing of each parameter that was counted and
the complexity level that was assigned.

F Total number of element types - total count of elements for the specified
parameter.

E-I

!
EXTERNAL INPUTS 3
Key Points: 3

* User data or user control information that enters the external boundary of the application
* It must change something inside the system
* It is unique if it has a different format or requires different processing logic !

Navaids Data State Menus 3
Description Complexity

1. Navaids Data Menu Low I
2. ADF Menu Low
3. VOR Menu Low
4. TAC Menu Low
5. VORTAC Menu Low
6. ILS Menu Average
7. GCA Menu Average
8. UHF Menu LOw 3
9. FM Menu Low
10. VHF Menu Low I11. Intersections Menu LOW

12. Obstructions Menu Low
13. Vector Menu Average

Training Data State Menus

Description Complexity I

1. Training Data Menu Low
2. Initial Conditions Data Edit Menu Average
3. Approach Map Specifications Edit Menu Low
4. Gaming Area Specifications Edit Menu Low
4. Navaids Selection Menu Low

I
I
I
I

E-2 I
I

EXTERNAL OUTPUTS

Key Points:

* User data or user control information that leaves the external boundary of the application
measured

• It is unique if it has a different format or requires different processing logic
* It does not include output response of an external inquiry

Description Complexity

Reports

1. Navaids data base sorted by airfield and Low
call sign designation

2. Training area data (IC. map, and selected Average
navaids data)

Map Preview Graphic Displays

1. Cross County Map (Map #0) Average
2. Approach Plate Maps (Map #0 - #9) Average

LOGICAL INTERNAL FILES

Key Points:

* A logical internal file is each logical group of data that is generated, used, and maintained
by the application.

* Logical internal files are accessible to the user through external input, output or inquiry type
* Databases are logical internal file types
• The user must be aware that the file exists ie., the file is not implementation dependent

ACS Data Base

Description Complexity

1. Navaids Average
2. Initial Condition Sets Low
3. Map Definitions Low
4. Gaming Area Definitions Low

E-3

I
EXTERNAL INQUIRIES 3
Key Points:

K Each unique input - output combination
* Cause and generate an immediate output

Causes no change to internal data
* Do not count a soft key as an inquiry if it generates a picture that was counted as an external

output

Control Keys

Description Complexity 3
1. Finished (^ F) Low
2. Page (P) Low
3. Quit (Q) Low

Menus

1. ACS Main Menu Low

I
EXTERNAL INTERFACES I

Key Points:

* Files passed or shared between applications should be counted as external interface types

Hardware/Software Interfaces n

Description Complexity I
1. Courseware Files Average

I
I
I
I

E-4 I
I

FUNCTION POINTS CALCULATION

Function Count:

Description

Low Average High Total

External Input 14x3 = 42 4x 4 = 16 Ox 6 = 0 58

External Output Ix4 = 4 3x 5= 15 Ox 7 = 0 19

Logical Internal 3 x 7 = 21 lxlO= 10 O x 15 = 0 31

ExtInterface Ox5 = o lx 7= 7 Oxlo= o 7

Ext Inquiry 4x3 = 12 Ox 4= 0 Ox 6= 0 12

Total Unadjusted Function Points (FC): 127

General Information Processing Function

Characteristic Degree of Influence Value

1. Data Communications 0
2. Distributed Functions 2
3. Performance 0
4. Heavily Used Configuration 0
5. Transaction Rate 0
6. Online Data Entry 5
7. End User Efficiency 2
8. Online Update 3
9. Complex Processing 0
10. Reusability 1
i. Instaflation Ease 2
12. Operational Ease 1
13. Multiple Sites 0
14. Facilitate Change 0

Total Degree of Influence (TDI): 16

CAF Complexity Adjustment Factor = 0.65 + (0.01 x TDI) = .81

FP Function Points Measure = FC x CAF = 102.87

LEX FORTRAN Language Expansion Factor = - 71

SLOC Source Lines of Code Count = FP x LEX =7,304

E-5

I
I
I
I
£
I
I
I

(This Page is Intentionally Left Blank) I
I
I
I
I
£
I
I
I
I
I

APPENDIX F

RESOURCE ESTIMATION REPORTS

F-I

Estimating Model: ADA COCOMO COSTMODL Output Summary 3
The NASA Interactive Software Cost Modeling System

Version 5.1.0
January 15, 1992 16:46:45

PROJECT TITLE

ADA COCOMO, from Carnegie Mellon conference

PROJECT DATA FILE I
File Title: UH-i FS Redevelopment Project - Estimate at completion

File Name: URIFS Save Date: 1/15/1992 Project Name: UHIFS

PROJECT CONFIGURATION FILES I
Phase Distribution Data File: P871104A
Effort & Schedule Data File EFFSCH89

Multiplier Data File ADACOCMO

Estimating Model: ADA COCOMO Project Mode: Semi-Detached

PROJECT DEVELOPMENT COSTING EQUATION 5
Effort Coefficient : 3.00 Effort Exponent : 1.10
Schedule Coefficient: 3.00 Sr edule Exponent: 0.38

PROJECT MAINTENANCE COSTING EQUATION
Effort Coefficient : 3.00 Effort Exponent : 1.05

Data For The ADA COCOMO Estimation Equation
ADA COCOMO, from Carnegie Mellon conference

January 15, 1992 16:46:45

Development Ratings Maintenance Ratings i
Exp W/ APA 0.040 Use Of MPPs 0.030

Design At PDR 0.034 Conformance 0.020

Risks By PDR 0.040
Req Volatility 0.016

(Sigma)Summation Of Rates 0.130 Summation Of Rates 0.050

Difference between EMBEDDED MODE and ADA MODE with ratings of Zero = 0.160 3
User Selections that make up the ratings for the Estimating Equations

The Current Selections for this case are shown in bold type

The values related to the respective selection columns are:
0.0 0.01 0.02 0.03 0.04 0.05

Selections which comprise the "Exp W/ ADA" rating

Exp W/ Ads Greatest Greater General Some Little No I
Selections which comprise the "Design at PDR" rating

Sch,Budget,Etc Fully Mostly Generally Some Little aome
% of Dev Sch 40% 33% 25% 17% 10% 5%
% Req Top S/W 120% 100% 80% 60% 40% 20%
Tool Support Full Strong Good SM Little None

Level Uncert Very Little Sm Consid- Signif- Extreme
Little erable icant 3

F-2 I
I I IN | |I

I

Estimating Model: ADA COCOMO COSTMODL Output Summary

Selections which comprise the "Risks by PDR" rating
Risk Management Fully Mostly Generally Some Little None
Sch,Budget,Etc Fully Mostly Generally Some Little None

% of Dev Sch 40% 33% 25% 17% 10% 5%
% Req Top S/W 120% 100% 80% 60% 40% 20%
Tool Support Full Strong Good SUle Little None

Selections which comprise the "Req Volatility" rating
Sys Req Base Fully Mostly Generally Some Little None

Level Uncert Very Little Some Consid- Signif- Extreme
Little erable icant

Org Track Recd Excellent Strong Good Some Little None

Use of Incr Dev Full Strong Good Sole Little None
Sys Arch Mod Fully Mostly Generally Som Little None

i Selections which comprise the "Use of MPPs" rating
Use of MPPs Greatest Greater General Some Little No

Selections which comprise the "Conformance" rating

Maint Conform Full General Often Some Little None

ADA COCOMO PROJECT DEFINITION DATA

ADA COCOMO, from Carnegie Mellon conference

January 15, 1992 16:46:45

Component Number 1 Component Name: UH1 FS

LINES OF NEW CODE ADAPTED CODE
Least : 78K Total Lines : 13K

Most Likely: 78K Percentage of ReDesign : 10%
Greatest : 78K Percentage of ReCode : 30%

Percentage of Integration : 10%

Dollar Cost per Man Month: $ 0

ONGOING MAINTENANCE

Lines Added per Year: OK Lines Modified per Year: OK

COST DRIVER RATINGS AND VALUES

COST DRIVER RELY DATA CPLX RUSE TIME
Development LO 0.88 LO 0.94 HI 1.08 VE 1.30 NO 1.00
Maintenance NO 0.96 NO 1.00 NO 0.97 NO 1.00 NO 1.00

COST DRIVER STOR VMVH VMVT TURN ACAP

Development NO 1.00 LO 0.92 LO 0.93 LO 0.87 HI 0.80
Maintenance NO 1.00 NO 1.00 NO 1.00 NO 1.00 NO 1.00

COST DRIVER PCAP AEXP VEXP LEXP MODP
Development NO 1.00 NO 1.00 NO 1.00 LO 1.14 NO 0.98

Maintenance NO 1.00 NO 1.00 NO 1.00 NO 1.04 NO 1.00

COST DRIVER TOOL SECU

Development NO 1.00 NO 1.00

Maintenance NO 1.00 NO 1.00

Schedule Coot Driver Eaf = 1.00

Remaining Cost Driver Eaf - 0.77
Total Cost Driver Eaf = 0,77

F-3

Im

Estimating Model: ADA COCOMO COSTMODL Output Summary

Software Development Costs Using

Semi-Detached Mode

ADA COCOMO, from Carnegie Mellon conference
January 15, 1992 16:46:45

Component KEDSI AAF EAF MM Nom MM Dev EDSI/MM K$/Comp $/EDSI
1- UHI FS 79.9 16 0.77 374 289 277 0 0

Total KEDSI 79.9 Totals 289 277 0 0

(MM) Nom 374 Dev Schedule 25.2 Nom schedule 25.2
(EDSI/MM)-Nom 214

ADA COCOMO PROJECT DEFINITION DATA I
ADA COCOMO, from Carnegie Mellon conference

January 15, 1992 16:46:45

LINES OF NEW CODE ADAPTED CODE I
Least : 77.765K Total Lines : 13.472K
Most Likely: 77.765K Percentage of ReDesign 10%
Greatest : 77.765K Percentage of ReCode 30%

Percentage of Integration : 10% i

Dollar Cost per Man Month: $0

ONGOING MAINTENANCE

Lines Added per Year: OK Lines Modified per Year: OK

I
OUTPUT SUMMARY

ADA COCOMO, from Carnegie Mellon conference
January 15, 1992 16:46:45

ACTIVITY DISTRIBUTION BY PHASE

Total Delivered Source Instructions: 79.9K
Effective Delivered Source Instructions per Man Month: 276.9
Number of FullTime Software Professionals: 11

II
I
I
I

F-4 I,a

i

r U

00

w m0 0 0 a 0 0 0 0 w 0 m0 0 0 0 0 0 0 0 a
i .

0
o

0
.

0
.... •

0
0000000

oo00000000o 44000000000 g Wo0oooooo

oo0 .0 0 . 0

N 04. m wo.°°c 4 0. v , . ,0c .°0o°4m

ma evE maa

444=...N.4..4... 44. 4 . 4)OONONOO0)

no go go N

o 0 0

.- . N,.... W . .-ooooooo r g

- -- -

rar

0 In m. r- Lm v-0 -~-

N0

040 $ 0

co 4.4l

w0 N m o0-' r

0 0N40O444.4 0 40 0 0 0 0 0 W04 Nr- ', 1

.0 - - - - - -- 0- - - 0 - - - - - 0 - - - - 0-0- - 0-0- -4 -,

0 4.o 0 -a

II
It

I
Estimating Model: SoftCost Ada Project Summary Report 3

PROJECT INFORMATION

Project name : PMTRADE I
Estimate date and time 01/16/92 09:16 am
Version : pmtrade - final
Start date : 01/30/92
Number of Subprojects : 0

CALIBRATION COEFFICIENTS

Productivity multiplier (A) : 1.420
Schedule multiplier (B) : 3.000
Effort exponent (alpha) : 1.200
Schedule exponent (beta) : 0.400
Base effort constant (gamma) : 2.600
Work hours/person-month : 160.0

SIZING SUBMODEL WEIGHTING FACTORS 3
New Ada Components : 1.000
Reused Ada Components : 0.200
Modified Ada Components : 0.300
New Other Components : 1.000
Reused Other Components : 0.250
Modified Other Components : 0.400

Effective Produc- Average Confi-
Size Duration Effort tivity Staff dence
(KSLOC/FP) (months) (pm) (SLOC/pm) (persons) (%)

PMTRADE 50.6 33.3 410.0 132.0 12.3 54.6 1
F
I
I
I
S

F-6 I
I

Estimating Model: SoftCost Ada Project Summary Report

PMTRADE PROJECT FACTORS

Type of Software Simulation
System Architecture Loosely-coupled (1.300)
Number of Organizations Involved 5
Organizational Interface Complexity High
Staff Resource Availability Nominal (1.000)
Computer Resource Availability Nominal (1.000)
Security Requirements Low (0.950)

PMTRADE PROCESS FACTORS

Degree of Standardization Very High (1.290)
Scope of Support Low (0.950)
Use of Modern Software Methods Nominal
Use of Peer Reviews Very High (1.650)

Use of Software Tools/Environment Low
Software Tool/Environment Stability Very High

PMTRADE PRODUCT FACTORS

Ada Usage Factor High (1.080)

Product Complexity High (1.160)

Requirements Volatility Nominal (1.000)

Degree of Optimization Low (0.910)

Degree of Real-Time High (1.110)
Reuse Benefits Nominal
Reuse Costs Low
Database Size Low (0.940)

PMTRADE PERSONNEL FACTORS

Number of Ada Projects Completed 0
Analyst Capability High (0.890)
Applications Experience Nominal (1.000)
Ada Environment Experience Very Low (1.250)
Ada Language Experience Low (1.190)
Ada Methodology Experience High (0.890)
Team Capability Very High (0.850)

KILO-LINES OF SOURCE CODE MOST
PMTRADE MAX LIKELY MIN WEIGHTED

New Ada Components 42.1 42.1 42.1 42.1

Reused Ada Components 6.2 6.2 6.2 0.7

Modified Ada Components 3.0 3.0 3.0 0.9

New Other Components 7.0 7.0 7.0 7.0
Reused Other Components 0.1 0.1 0.1 0.0
Modified Other Components 0.1 0.1 0.1 0.0

Total effective size : 50.7 KSLOC Size variance: 0.0 KSLOC

F-7

I1

I
Estimating Model: SoftCost Ada Resource Allocation Summary (Labor Hours) 3

ADA OBJECT-ORIENTED PARADIGM I
SW Development SW Management SCM SQE

Life Cycle Phases Effort Effort Effort Effort

System Reqts Analysis/Design 6232.0 623.2 311.6 311.6

SW Requirements Analysis 12464.0 1246.4 467.4 623.2 3
SW Preliminary Design 9348.0 934.8 467.4 934.8

SW Detailed Design 9348.0 934.8 623.2 934.8 3
Coding and CSU Testing 9348.0 934.8 623.2 934.8

CSC Integration & Testing 15580.0 1558.0 934.8 1246.4 1
CSCI Testing 6232.0 623.2 623.2 623.2

System Integration & Testing 18696.0 1869.6 311.6 623.2
-- --- -- -

- -- - - -- - ---.- - - - -

TOTALS 87248.0 8724.8 4362.4 6232.0

F
I
I
I
!
I
I
!

F-8

I

10 NC

U)'O U i 44w

.. .~N N

Or zNIl.f1 1 10 D I

00 w- r-- r1 ,IrIm- 0 0 wrr r- 0 m r wr-w 0 0 w 0 r0 O- 00 0 0 0 00w

N N4.flztcuO9w 10a.0 .
OrC 04 Ed N N N

2 - 00 0!- - I w

NN0O nu O0O0 0. ID wN

0 N -- N NN N

-------------- - ------

0 .. "." OIN 1 1- 0.0- 4N W N I-------N NN

~0 I 0 0 0 0 nI 0 0 10 0 10 0 10 0, 0 m ~NI 0 0 0- N 0 t- 0~ 0 r, O 0 0 0 a 0~ O

0. N N C N N

VWC. .3 304 002 V

0.(0 NN- 00 0 0 - -- --.

0 0 N 0 20OO20 0 02 0 - %.a 0 0 006.00U . 0000

N~ 1010 20 w IV -NI* - 10c a -N --C .N
C~N -. *-0 . N NN *N 4N .NN *)1rm

0l .C- -*N N N N 10 I I

caN

aE-

Z~ U
00 0 0N 000 NN r N0 (a N0 .. I

0 - N- - o w-v- v wa nwn-vn- o
z - - - - - - - - - - - - - -okI

z z.4.4 z 4 4 A v uA 4u , C)I
ws w WM 5n 3 M n Nw) Nw

Iz z

-~ o ol ooo oooCLoocoo ooooo oAouoo uou

>.oooooooooooomooo D.OOOOOOGOQOOOOOOOOOO0m

0. o N N lIl N N I N m , mmvmmvvvvvnvvvvvv t o.-

Nr r. N1 "mIO r- 0 1 r N - 01 m1 N r

01NN N NN CoIN N NN c N cd~lc

'.1 0' N2 N .f vI 0 o N

0. N

- 0. - - 20 -~ - - - - - - - - - - - - --- -N - 0 - I -

-- -I -G -- - - - - - - - - - -- - -~ - -~Cs - - - 3-- -I DI
1, C E NE ' 31 ECW~ M W E4 I

ElE 0 E . .0020 . . -0 3t 02 'o 0.~ U O 1 .3U0 A Z O MUU v mIO v.1 1 4 3 I W oc

caC.0.*

MI-4 E4 (4 a E- N fl 4
I'00I' 0 w4 N C4 4o Ej~lAfl L) 4l Ill naI U-N 4 1 O

u 9 u0 3t f U I

-7 - "- - - - - - ---- - - - - - - - - -

AQ0 i0 ,ua uu.

~
0 2

; O00 000 000 000 nen 000 OO0 000 000

0 lomm0
I 1 D D 'o 1C0 10W r z 0 ID w m 0 w w 0-ene

- - - - - - - - - - - - --O -- 0 -O- - - - -

M 0 y

U.6Q . 4> > 0.>Q 4

E.Q 2

lo. o -o 0 lo Cr- o lo 0. lo a, lo .00. C-m 4m (-C - n n at mo-er Mne

OONO ON0 lo wO N N.. ,- N N

- -

m0 0 . 0 0 . e e e e en n n n 0 e 0 e 0e~
U 2 . ma 69 6M Q 6QU 4.

0 a .00000000.0.0 m z a -r-0 m 0 w 0r-w-,0 20 0r-a- 0

aj 1UU 000....> 000 0 o 4 m I m W~0 m I m Omm m

0 ~0 aC000m , ,0 020a0 o 22 0 o 0 20 0 0 0 000
M U u -r- u c. .0.0a a E- 0 ~ -a-.0-~C0 >2 enUg3- U U U U U e

enON " N ~ o oo02o o 00 ~ ~ ~ S 0 0 0 0 0 0 0 - N-0 0 0

on 'n Dw4z a4zl o1

-

24nrrr.Cr-- c.040C 4C-0...00---0 m- -4-C- w-e
OONNNNNNOOOOOOOOOO0..-C. N.-....C- .

0-
cn ~ 0 0 000000 0 oo0o00 a000 0 00 o0m0o0000 00 000a 000o

V. NNo I 0 %

0W

ID Z0r lc 02 4

2 06 .42 -2

W D0 . Er- - . S C - E-20 02 .E2 a.

0;E .0 >2C m to0 m~C 0. >2 z Z 1 E

:t ot, x 0 .4~ ~0. 0c

m 020 to2 m m 0. -C m2to0m -

E4 -z w u0 u x 0 w E 0 0. 0 6t 0
u M ~J 0. u 00 02 XZ020 u2.00 a X X 3

0m 02 3 .J 0 1

en4 ~ ~ ~ ~ ~ r m v - ,.e400 - - - Nn .- - -

m~ * e .4

,a 10 a0 9- r- co CD co 2 02 0

..

I

Estimating Model: SASET Model Input Summary

!I -RI12 END

****** Tier I Distribution ****

Title Budget Schedule Value 3
Class of Software 1.000 0.950 Ground
Hardware System Type 1.120 1.120 Distributed
Pct of Memory Utilized 0.950 0.990 50 %
S W Configuration Items 1.000 1.000 2

Development Locations 1.000 1.000 1
Customer Locations 1.020 1.020
Workstation Types 1.010 1.010 2 U
Primary Software Language 1.050 1.025 Ada
Pct of Micro-Code 1.030 1.030 5 %

Security Level 1.000 1.000 1

Software Budget Multiplier 1.18547
Software Schedule Multiplier 1.20597
Budget Data Factor 1.000
Schedule Data Factor 1.000

Press any key to continue...

____TR2.END-
Direct Input Mode for SLOC

High Order Language Assembly Language
Software Type New Mod Rehost New : d Rehost

,Systems 0 0 0 0 9
Application 32022 1553 3267 0 0
Support 10501 1535 0 6545 0
Security 0 0 0, 0

:1 Data Statements 42523 3088 2267 6545 3

0 Total 48878 Total 6545

High Order Language Assembly Language
New Mod Rehost New Mod Rehost

New HOL Equivalent
42323 2254 327 2182 3 25

Total 47286 Total 45104 Total i-2

Arrow keys, TAB - change input field. F9 - help. INS - save.

F -12 1

I

Estimating Model: SASET Model Input Summary
__ IITRI2.END

****** Tier 3 Distribution * *

Title Budget Schedule -_Ompiex tv

System Requirements 1.000 1.000 Average
Software Requirements I 100 1.000 Average
Software Documentation 1.050 1.025 Very Complex
Travel Requirements 1.020 1.010 cmplex
Man Interaction 1. 020 1.010 Complex
Timing and Criticality -.020 1.010 Complex
Software Testability 1.020 1.020 Complex
Hardware Constraints 0.900 0.990 Simple
Hardware Experience 1.020 1.020 Complex
Software Experience 1.020 1.020 Complex
Software Interfaces 1.000 1.000 Average
Development Facilities C .950 0.990 Scple
Development vs Host Sys i.000 1.000 Ave:-.'e
Technology Impacts 1.000 1.000

Press any key to continue.

Tier 3 Distribution

Title Budget Schedule Complex:ty

COTS Software I.20 L.020 Complex
Development Team 1.000 1.000 Avera e
Embedded Development Sys 0.950 0.990 SmpMle
Software Development Tools 1.020 0me
Personnel Resources 1.000 -.000 Average
Programming Language 1.030 1.025 Very Complex

Software Systems Budget Multiplier 1.02924
Software Systems Schedule Multiplier 1.13963

Press any key to continue...

F - 13

A1

Estimating Model: SASET Summary of Software Development Effort - CDR Specified

I ITRI.END

Summary of Software Development Effort by Organization . Phase
152 ManHours ' ManMonth)

Phase Systems Software Test Quality TctaI

Systems Reqts VS.55 32.57 3.84 2.47 S7.42
Reqts Allocation 8.35 19.72 2.33 1.49 31 , 1
Software Reqts i1.88 38.33 4.31 2.90 S7.42
Preliminary Design 7.22 31.60 3.45 2.39 44 66
Detailed Design 12.06 70.15 8.18 5.31 95.70

Code 3.84 62.04 9.25 4.70 84 83
Checkout 4.47 32.36 6.39 2.45 45.68
Unit Testing 5.59 39.76 10.36 3.01 58.73
Formal.Phys Qual Test 4.18 29.i0 10.19 2.20 45.68 U
Systems Test & Integ 9.31 70.71 38.60 5.36 123.99

Total 90.44 426.35 96.90 32.30 45.99 3

ress any key to contine. ..

Summary of Software Development Effort by Organization & Review

(152 ManHours ManMonth)

Review Systems Software Test Quality Total

Sys Planning Review 3.37 5.22 0.58 0.40 9.E7

Sys Requirements Rev 19.51 37.06 4.42 2.81 53.3,)
Sys Design Review 14.11 41.76 4.76 3.16 63.80
Preliminary Design Rev 8.97 38.19 4.18 2.89 54.23

Critical Design Review 12.06 70.14 8.19 5.31 95.70 i
ist Test Readiness Rev 13.33 94.44 15.57 7.15 130.50
2nd Test Readiness Rev 5.59 39.76 10.36 3.01 58.73
Func/Phys Config Audit 5.89 41.04 13.20 3.11 65.2i
Acceptance Review 7.59 58.73 33.63 4.45 104 .40

Total 90.44 426.35 96.90 32.30 645.9e 3

ress any key to continue...

F - 14 3

I

Estimating Model: SASET Summary of Manloading - CDR Specified

__IrTRI.END

Summary of Manloading by Organization(Man Months)

Total Engineering (646.0 ,M
Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1987 12.0
1988 12.0 12.2 12.4 12.8 13.2 13.7 14.1 14.6 15.1 15.5 15.9 16.2
1989 16.6 16.8 17.0 17.1 17.2 17.2 17.2 17.1 17.0 16.8 16.5 16.3
1990 16.0 15.6 15.3 14.9 14.6 14.2 13.8 13.S 13.2 12.9 12.6 12.4
1991 12.1 12.0 11.9 11.8 11.7 11.7 11.7 11.8

)ress any key to continue...

F- 15

I

Estimating Model: SASET Summary of Software Development Effort - CDR Not Specified 3
I IITRI2.END

Summary of Software Development Effort by Organization & Phase

(152 ManHours /I ManMonth) g
Phase Systems Software Test Quality Total

Systems Reqts 16.69 29.28 3.47 2.22 51.67
Reqts Allocation 7.53 17.71 2.12 1.34 28.70
Software Reqts 10.69 34.45 3.92 2.61 51.67

I Preliminary Design 6.48 28.42 3.13 2.15 40.19
Detailed Design 10.79 63.13 7.41 4.78 86.11 U
Code 7.70 54.62 8.17 4.14 74.63
Checkout 3.89 28.50 5.64 2.16 40.19
Unit Testing 4.86 35.01 9.14 2.65 51.67
Formal/Phys Qual Test 3.63 25.61 9.00 1.94 40.19
Systems Test & Integ 8.10 62.16 34.11 4.71 109.07

1 Total 80.37 378.89 86.11 28.70 574.08

Press any key to continue... I
I!I - IITRI2.END

Summary of Software Development Effort by Organization & Review
(152 ManHours ManMonth)

Review Systems Software Test Quality Total

Sys Planning Review 3.03 4.70 0.53 0.36 8.61
Sys Requirements Rev 17.58 33.30 4.00 2.52 57.41
Sys Design Review 12.71 37.52 4.33 2.84 57.41
Preliminary Design Rev 8.05 34.35 3.79 2.60 48.80 m

I Critical Design Review 10.79 63.12 7.41 4.78 86.11
1st Test Readiness Rev 11.61 83.15 13.76 6.30 114.82
2nd Test Readiness Rev 4.86 35.00 9.15 2.65 51.67
Func,'Phys Config Audit 5.13 36.12 13.42 2.74 57.41
Acceptance Review 6.60 51.61 29.72 3.91 91.85 W

Total 80.37 378.89 86.11 28.70 574.08

Press any key to continue...

F- 16 3

I

Estimating Model: SASET Summary of Manloading - CDR Not Specified

IITRI2.END
Summary of Manloading by Organization(Man Months)

Total Engineering C 574.1 MM)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1987 17.1
1988 17.3 17.9 18.8 19.9 21.0 22.0 22.9 23.7 24.2 24.5 24.6 24.5

1989 24.2 23.7 23.1 .22.4 21.6 20.7 19.9 19.1 18.4 17.8 17.3 17.0
1990 16.8 16.7 16.8

I'

Press any key to continue...

F- 17

3

Estimating Model: SASET Summary of Software Schedule

I ITRI.END _

Summary of Software Schedule by Phase
(Calendar Months)

5CDR Specified) (CDR Not SpeLified)
ser Schedule Derived Schedule
Month/Year Month/Year

Phase From To From To

Systems Requirements 12/1987 - 4/1988 12/1987 - 2/1988
Requirements Allocation 4/1988 - 7/1988 2/1988 - 4/1988
Software Requirements 7/1988 - 11/1988 4/1988 - 6,/1988
Preliminary Design 8/1988 - 2/1989 5/1988 - 8/1988 7,
Detailed Design 2/1989 - 7/1989 8/1988 - 12/1988
Code 6/1989 - 4/1990 11/1988 - 5/1989
Checkout 10/1989 - 8/1990 1/1989 - 7/1989
Unit Testing 1/1990 - 10/1990 4/1989 - 9/1989
PQT / FQT, Integration 4/1990 - 111991 5/1989 - 11/1989
Systems Test & Integration 1/1991 - 8/1991 11/1989 - 3/1990

Press any key to continue...

IITRI.END

Summary of Software Schedule by Review
(Calendar Months)

(CDR Specified) (CDR Not Specified)
User Schedule Derived Schedule

Review Month/Year Month/Year

Systems Planning Review 12/1987 12/,1987
Systems Requirements Review 4/1988 2/1988
System Design Review 9/1988 5/1988
Preliminary Design Review 12/1988 7/1988
Critical Design Review 7/1989 12/1988
ist Test Readiness Review 4/1990 5/1989
2nd Test Readiness Review 8/1990 8/1989
Func/Phys Configuration Audits 1/1991 11/1989
Acceptance Review 8/1991 3/1990

Press any key to continue...

F- 18

I

I
I
I
I
I
I APPENDIX G

ADAMAT REPORT

I
I
I
I
I
I
I
I
U
I
I G-1

I

ADAMAT Results Application Code3

Date., 12-30-1991 page:I
0UAO: (USER.ADAMAT.U51_?ATA]APPLICATION.REP_-COM;1

Score Good Total ILevel --------Metric NaeI

0.44 43650 98225--------------- RELIABILITY
0.54 87611 161623 1 -------------MAINTAINABILITY

0.96 487577 505938 11---------- PORTABILITY
0.86 548183 635673 Vl---------- ALLCRITERIAU

41354 2 ------------BLOC

189246 3 -----------PHYSICALLINES
63800 4 ---------PHYSICA.L ADA LINES
62528 5 -------- ADAUNCOMMENTEDLINESI

1272 5 -------- ADACOMMENTEDLINES

1270 6 --- COMMENTED LINESWITHTEXT
2 6 --- COMMENTED LINESBLANK

107530 4 --------- PHYSICALCOMMENTLINES

106956 5 -------- COMMENTLINESWITH_TET
574 5 -------- COMMENT LINES BLANK

17916 4 --------- PHYSICAL -BLANKLINES
41354 3 ----------- LOGICAL_LINES-
37267 4 --------- STATEMENTSI
24129 5 -------- EXECUTABLESTATEMENTS

13138 5 ---------DECLARATIVE_STATEMENTS
3627 4 --------- CONTEXT_CLAUSES
2241 5 -------- WITHCLAUSES

1386 5 -------- USE-CLAUSESI
460 4 --------- PRAGMAS

0.65 11578 17789 2 ------------ ANOMALYMANAGEMENT
0.39 2887 7345 3 -----------PREVENTION
0.31 1331 4252 4 --------- APPLICATIVE_DECLARATIONSI
0.50 444 891 5 -------- APPLICATIVE DECL SPECIFICATION

0.26 887 3361 5 -------- APPLICATIVE_0ECLBODY
0.48 1392 2882 4 --------- DEFAULT-INITIALIZATION
0.30 129 428 5 -------- DEFAULT INIT SPECIFICATION

0.51 1263 2454 5 -------- DEFAULT7INIT BODYI
0.71 77 108 4 --------- NORMAL LOOPS

0 0 4 --------- CONSTRAINEDNUMERICS
0.92 87 95 4 --------- CONSTRAINED SUBTYPE
0.00 0 8 4 --------- CONSTRAINEDVARIANT RECORDSU
0.83 6676 10399 3 ----------- DETECTION

0 0 4 --------- SUPPRESSPRAGMA
0 5 -------- CONSTRAINT ERROR
0 5 -------- PROGRAMERROR

0 5 -------- STORAGEERRORI
0 5 -------- NUMERICERROR

0.83 8676 10399 4 --------- USER TYPES
0.90 903 998 5 -------- USER TYPES FOR PARAMETERS
0.82 3740 4535 5 -------- USER TYPES SPECIFICATIONI
0.83 4033 4866 5 -------- USER TYPES BODY
0.33 15 45 3 -----------RECOVERY-
0.33 i5 45 4 --------- USERFXCEPTIONSRAISED
0.98 448994 456261 2 ------------ INDEPENDENCE -

0.97 162890 167974 3 ----------- 10_INDEP
7 4 --------- NO 40MISSED-CLOSE

0.97 104729 107567 4 --------- NOSYSDEP_10
0.96 58161 60400 4 ---------- 10 NON -MIX
0.98 37737 38333 3 ----------- TASKINDEPI
0.99 33569 33867 4 ---------- NO TASKSTHT
0.93 4168 4466 4 --------- TASK STNT NON MIX
0.99 139968 141366 3 ----------- MACH INDEP

G-2

3ADAMAT Results Application Code

Dae:13019 page: 2

DUAC USER.ADAMAT.UH1_?ATA]APPLICATION.REP_COM1lIScore Good Total ILevel --- Metric Name

0.00 0 7 4 --------- MACHARITHINDEP

0 0 5 --------PACKAGEARITHINDEP

0o --- NO MAXtNTI0 6 --- NOMININT
0 6 --- NO MAX DIGITS

0 6 --- NO MAXMANTISSA

0 6--- NO FINE_-DELTA
0 6--- NO TICK
4 5 -------- NOINTEGER_DECL

0 5 -------- NOSHORTINTEGERDECL

0 5 --------NO LONGINTEGERDECL

0 5 ---------NOFLOATDECL
0 5 -------- NOSHORT FLOAT DECL
0 5 -------- NO -LONGFLOAT OECL

1 5 -------- NONATtJRALDECL
2 5 -------- NOPOSITIVE_DECL

0 0 5 ---------FIXEDCLAUSE

0.60 1615 2706 4 --------- MACHREPINDEP

11 5 -------- NOPRAGMA PACK

0.14 173 1219 5 -------- NUMERICCONSTANT DOL

0 0 5 -------- NUMERIC TYPEDECLARATIONSI0.98 1442 1476 5 -------- CLAUSEREPINDEP
1.00 833 833 6 --- NOLENGTH CLAUSEFOR SIZE

.0.76 25 33 6 --- NOLENGTHCLAUSEFORSTORAGESIZE

0.96 292 305 6 --- NO ALIGNMENT CLAUSEFORRECORD TYPES

0.96 292 305 6 --- NO COMPONENT CLAUSEFORRECORD TYPES

0.99 112368 112668 4 --------- MA-CECONPIGINDEP

0.99 5043 5101 5 -------- NO ADDRESSCLAUSE_IN_DECL

0 5 -------- NO-PRAGSYSPARAM

0.99 107325 107567 5 -------- NOREPATTRIBUTEI1.00 25985 25985 4 --------- MACECODEINDEP
1.00 25985 25985 5 -------- NOM ACH_CODE_STMT

0.99 108399 108410 3 -----------SOFTINDEP

1.00 107567 107567 4 ----------NOSYSDEPMOD

4 4 ----------NOIMPLDEPPRAGMAS
6 4 ---------- O!JOPRAGMAINTERFACE

0.99 832 833 4 ----------NON ACCESSTYPE
0 4 ----------NO Y1PL DEP ATTRS

0.00 0 178 3 -----------PHYS LIi INDEPI178 4 ----------COMPILERLIMIT
0.68 5490 8123 2 ------------MODULARITY

0.62 3616 5834 3 -----------INFORMATION HIDING

0.69 3616 5212 4 --------- HIDDEN INFORMATION

0.67 887 1331 5 -------- CONSTANTSHID

0 0 5 ---------EXCEPTIONSHID

0.85 2474 2921 5 -------- VARIAELESHID

0.25 211 833 5 -------- TYPESHID

0.46 44 95 5 ---------SUTYPESBID
0.00 0 32 5 -------- TASKS-HID
0.00 0 622 4 ----------PRIVATE_INFORMATION

0.00 0 622 5 -------- PRIVATE TYPES

0 0 5 -------- LIMITED PRIVATE TYPES

0 0 5 -------- PRIVATETYPEAND PART

0 0 5 -------- PRIVATETYPEANDCONSTANT
0.95 1537 1611 3 ----------- PROFILE50.95 1536 1610 4 --------- LIM ITE D SIZE PROFILE

3 0-3

I

ADAMAT Results Application Code 3
Date: 12-30-1991 page: 3
DUAO: [USER.ADAMAT.U91IATAAPPLICATICN.REPCOM;j

1

Score Good Total Level ------- Metric NmetU
1.00 1 1 4 -------- SIMPLE BLOCKS
0.50 337 678 3 --------- COUPLING

0.68 232 339 4 -------- NO MULTIPLE TYPE DECLARATIONS

0.31 135 339 4 -------- NO VARIABLE DECLARATIONS IN SPEC

0.80 33093 4:554 2 ---------- SELF DESCRIPTIVENESS
0.70 18974 27208 3 ---------- COMMENTS
0.81 13108 16263 4 -------- N COMMENTS

1.00 2917 2917 5 ------- NCSSPEC

1.00 1695 1695 6 ---- NCS PACKAGE SPEC
1.00 160 160 6 ---- NCS-TASKSPEC

1.00 1062 1062 6 ---- NCS-SUBPROG SPEC
0.99 4173 4178 5 ------- NCS BODY
1.00 740 740 6 ---- NCS PACKAGE BODY
1.00 160 160 6 ---- NCS TASK BODY

1.00 3273 3273 6 ---- NCS SUBPROGBODY
0.00 0 5 6 ---- NCS SUBUNIT

0 0 6 ---- NCS BODY STLU

0.31 1254 4109 5 ------- NCS STATEMENTS
0.02 3 155 6 ---- NCS EXIT
0.07 12 182 6 ---- NCS RETURN

0 0 6 ---- NCSGOTO
0 0 6 ---- NCS ABORT

0.82 119 145 6 ---- NCS DELAY

0 0 6 ---- NCS TERMINATE

0.01 31 2241 6 ---- NCS WITH
0.79 1089 1386 6 ---- NCS USE

0.94 4764 5059 5 ------- NCS DECLARATIONS
0.80 367 460 6 ---- NCS PRAGMA
0.00 0 39 6 ---- NCS -RECORD REPRESENTATION
0.50 87 174 6 ---- NCS -ADDRESS CLAUSE
0.51 20 39 6 ---- NCS ALIGNMENT CLAUSE U
1.00 24 24 6 ---- NCS LENGTH CLAUSE

1.00 1331 1331 6 ---- NCS CONSTANT DECL

1.00 2912 2912 6 ---- NCS VARIABLE DECL

0.29 23 80 6 ---- NCS ENTRY DECL

0.54 5866 10945 4 -------- N COMMENTED
0.83 605 729 5 ------- NCO SPEC

C.98 333 339 6 - N---- NCO -PACKAGE SPEC
1.00 36 36 6 ---- NCO -TASK SPEC
0.67 236 354 6 ---- NCO SUBPROG_SPEC U
0.88 1122 1272 5 ------- NCO BODY

0.97 144 148 6 ---- NCO PACKAGE BODY

1.00 32 32 6 ---- NCO TASK BODY

0.87 946 1091 6 ---- NCO SUBPROGBODY

0.00 0 1 6 ---- NCO SUBUNIT I
o 0 6 - NCO BODY STUB

0.09 362 4109 5 ------- NCO-STATEMENTS

0.01 2 155 6 ---- NCOEXIT
0.03 6 182 6 ---- NCO RETURN I

0 0 6 ---- NCO-GOTO

0 0 6 ----- NCO ABORT
0.19 28 145 6 ---- NCO-DELAY

0 0 6 ------ NCO TERMINATE

0.01 20 2241 6 ---- NCO WITH
0.22 306 1386 6 ---- NCO USE
0.78 3777 4835 5 ------- NCO-DECLARATIONS

GI
G-4

I

ADAMAT Results Application Coe

Date: 12-30-1991 page: 4

DUAC: [USER.AD)AI4AT.UB1 ATAIAPPLICATION.REPCCM4;IIScore Good Total I Level -------- Metric NaMe

0.26 118s 460 6 -- N-COPRAGMA

0.00 0 13 6 6---NCO RECORD_-REPRESENTATION
0.5 34 58 6 -_AZ!5CLAUSE

0.69 9 13 6 --- NCOALIGNMENT-_CLAUSE
1.00 8 8 6 --- NCOLENGTH CLAUSE

0.95 1258 !111: 6----NC vCNSTANT DECL,

0.80 2329 2912 6 6---NCC -VARIABLEDECL

0.52 21 40 6 --- NCO ENTRYDECL

0.98 14119 14346 3---------ID3ENTIFIER

0.98 14119 14346 23;---------NOPREDEFINED_-WORDS

0.40------2---- 2------------------------ SMLCT

-------------------------------------- EXPRES_TO_DO_BOOLEANASG

0.13 4985 39502 3 -----------OES:ONSIMPLICITY

0.16 954 6124 4 ----------CALLSTOPROCEDURES

0.37 150 403 4 --------- ARRAYTYPEEXPLICIT
0.17 95 557 4 ----------SUBTYPE -EXPLICIT

0.72 84 11.6 4 --------- ARRAY RANGE TYPE_-EXPLICIT

0.11 3702 32302 4 ----------DECL-ARATIONS CONTAINLII'1ERALS

0.64 23663 36818 3 -----------FLOW SIMPLICITlYI0.49 2135 4321 4 --------- BRANCH-CONSTRUCTS
0.96 1052 1091 4 ----------SINGLEEXITSUBPROGRAM

0.64 413 649 4 ----------FORLOOPS-

0.97 1563 1610 4 ----------LEVELOFNESTINGBYMODULE

08 154 11 4----- EELFNSTN0.95 4093 4321 4 ----------STRUCjURED BRANCHCONSTRUCT

0.85 3672 432. 4 4--------- NON R ACK BRANCHCONSTRUCT

0 0 4 -------- -NO LABELS -

0.46 2007 4377 4 ----------DECISIONSI0 0 4 ---------- OCT05
0.39 4321 11093 4 ----------BRANCHANDNESTING

0.91 1460 1610 4 ----------CYCLOMATICCOMPLEXITY

0.90 1443 1610 4-------- -MULTIPLE_COND_CYCLCMATICCOMPLEXITY

0.54 16956 31510 2------------SYSTEM CLARITY

0.54 16956 31510 3 -----------STYLE

0.60 5451 9131 4 ----------EXPRESSIONSTYLE

0.87 3225 3725 5 --------- NONNEG.ATEDBOOLEANEXPRESSIONS

0.37 1605 4344 5 ---------EXPRESSIONS_PARENTHESIZEDI0.80 521 649 5 -------- NO -WHILELOOPS
0.24 100 413 5 ---------FOR LOOPS -WITHTYPE

0.88 6197 7028 4 ----------DECLARATIONSTYLE

0.16 156 975 5 --------- NODEFAULT_MODEPARAMETERS

0 0 5 -------- PRIVATE ACCESSTYPES

0.99 5788 5800 5 -------- SINGLE_OBJECTDECLARATIONLISTS

1.00 253 253 5 -------- SINGLEIMPLICIT_TYPE_-ARRAY

0 0 5 -------- NOINITIALIZATIONBYNEW

0.61 3733 6162 4 --------- NAMING-STYLE

0.00 1 650 5 -------- STRUCTURES-NAMED _

0.00 1 649 6 - AMEDLOOPS

0.00 0 1 6 --- NAMEDBLOCKS

0.72 1643 2292 5 --------- STRUCTUREENDS -WITHNAME

1.00 1642 1642 6 --- MODULEENDWITHNAME

0.00 1 649 6 --- LOOP END WITH NAME

0.00 0 1 6 --- BLOCS END WITH NAME

0.01 1 155 5 -------- NAMED EXITS -

GI

ADAMAT Results
Application Code3

Date: 12-30-1991
page:5

D)UAO: SRAAMTU1gTAAPIAT NRPCOM; 1I
Score Good Total jLevel------Metric Name

0.68 2088 3065 5 ------- - Wa1l AGGREGATE

0.17 1575 91.89 4 4---------guALIjICATION STYLE

0.00 0 3065 5 ---------QUALIFIEDAGGREGATE

0.26 1575 6124 5 -------- QUALIFIED-SUBPROGRAM

G - 6

ADAMAT Results Support Code

Date: 12-31-1991 page:I

DUAO: [USER.ADAMAT.UB1_ ATA]SUPPORT.REP_COM 1

Score Good Total ILevel --- Metric Name

0.48 12905 26875 1 ----- RELIABILITY

0.54 2285 42 921 ------------- MAINTAINABILITY

0.95 107745 113276 1 -------------PORTABILITY
0.84 124568 148136 '1-------------ALLCRITERIA

10799 2 ------------ SLOC
46732 3 -----------PHYSICAL_LINES

16173 4 --------- PHYSICAL ADA _LINESI15918 5 -------- ADAUNCOMMENTEDLINES
255 5 -------- ADA COMMENTED_LINES
254 6 --- COMENTED_LINESWITHTEXT

1 6 --- COMMENTEDLINES_BLANK

24803 4 ----------PHYSICALCOMMENT-LINES
24652 5 -------- COMMENTLINES WITHTEXT

151 5 --------- COMMENTLINESBLANK
5756 4 ----------PHYSICALBLANKLINES

10799 3 -----------LOGICAL_LINES

9958 4 --------- STATEMENTS
6931 5 -------- EXECUTABLE_STATEMENTS
3027 5 -------- DECLARATIVESTATEMENTS

830 4 --------- CONTEXT_CLAUSES
488 5 -------- WITHCLAUSES
342 5 -------- USECLAUSES

0.67 2902 4333 2 ------------ ANOMALYMANAGEMENT

0.44 825 1883 3 ----------- PREVENT:ON10.46 559 1207 4 ----------APPLICATIVE DECLARATIONS
0.69 406 587 5 -------- APPLICATIVE DECL SPECIFICATION

0.25 153 620 5 -------- APPLICATIVE DECL BODY

0.7 236 632 4 --------- DEFAULT INITIALIZATION
0.7 48 179 5 -------- DEFAULTINITSPECIFZCATZON

0.42 188 453 5 --------- DEFAULT INIT BODY
0.45 10 22 4 --------- NORMALLOOPS

0 0 4 --------- CONSTRAINED_NUMERICS

1.00 20 20 4 ---------- CONSTRAINED SUBTYPEI0.00 0 2 4 ---------- CONSTRAINEDVARIANTRECORDS
0.85 2070 2443 3 ----------- DETECTION

0 0 4 ---------- SUPPRESSPRAGMA
0 5 -------- CONSTRAINTERROR

0 5 --------- PROGRAMERROR
0 5 -------- STORAGEERROR

0 5 -------- NUMERIC ERROR

0.85 1070 2441 4 --------- USERTYPES

0.86 128 148 5 -------- USERTYPESFORPARAMETERS

0.89 1427 1604 5 -------- USER TYPES SPECIFICATION
0.75 515 691 5 -------- USER TYPES BODY

1.00 7 7 3 ----------- RECOVERY -

1.00 7 7 4 ---------- USEREXCEPTIONSRAISED

0.97 98816 101411 2 ------------ INDEPENDENCE
0.95 33762 35428 3 ----------- 10 INDEP

0 4 ---------- No MISSED_CLOSE

0.96 21154 22048 4 ---------- NO SYSDEP_10

0.94 12608 13380 4 ---------- 10 NON MIX

0.97 11719 12115 3 ----------- TASK INDEP

0.98 9216 9414 4 --------- NO TASKSTMT

0.93 2503 2701 4 --------- TASKSTM4TNONMIX

0.98 31122 31629 3 ----------- MACHINDEP -

G -7

ADAMAT Results Support Code3

Date : 12-31-1991 page: 2
DUAO: [USER.AAMAT.UBl_?ATA3SUPPORT.REP -CON;1I

Score Good Total ILevel -------- metric Name

0 0 4 --------- MACHARITHINDEP

0 0 1 5 -------- PACKAGE ARITH INOEP
6 ---6--NOMAXtjNT -

o 6 --- NO MAXDIGITSI

o 6 --- NO MAX MANTISSA
o 6 --- NOFINE-DELTA

0 6 --- NOTICKI
0 5 -------- NOINTEGERDECL
O 5 -------- NOSHORTINTEGERDECL
0 5 -------- NOLONGINTEGERDECL
0 5 -------- NOFLOATDECL-

0 5 -------- NOSHORTFLOATDECLU
0 5 -------- NOLONGFLOAT 3ECL

O 5 -------- NONATURALDECL
O 5 -------- NOPOSITIVE DECL

0 0 5 -------- FIXED_CLAUSEI
0.46 381 831 4 --------- MACHREPINDEP

7 5 -------- NOPRAGMA PACK

0.16 80 509 5 -------- NUMERIC_CONSTANT_DECL
0 0 5 -------- NUMERIC TYPEDECLARATIONS

0.96 301 315 5 -------- CLAUSE_REP_INDEPI
1.00 166 166 6 --- NOLENGTHCLAUSEFOR_SIZE

1.0 15 15 6 --- NOLENGTHCLAUSEFOR_STORAGESIZE
0.90 60 67 6 --- NOALIGNMENTCLAUSEFOR -RECORD -TYPES
0.9go 60 67 6 --- NOCOMPONENTCLAUSEFORRECORD TYPES

0.99 23310 23367 4 --------- MACHCONFIGINDEP
0.98 1287 1319 5 -------- NOADDRESSCLAUSE_IN_DECL

0 5 -------- NOPRAGSYSPARAM
0.99 22023 22048 5 -------- NOREP_ATTRIBUTE
1.00 7431 7431 5 -------- N MACH CODE STMT
1.00 7431 7431 4 -------- MACHCOIDEPSM
0.99 22213 22217 3 ----------- SOFT INDEP
1.00 22048 22048 4 --------- NO SYS DEP MOD

1 4 --------- NO IMPEDEPPRAGMAS
2 4 --------- NO PRAGMA INTERFACEI

0.99 165 166 4 --------- NON ACCESS TYPE
0 4 --------- NO IMPLDE6_ATTRS,

0.00 0 22 3 ----------- PHYS LIM INDEP

22 4 --------- COMPILERLIMIT

0.43 658 1537 3 -----------INFORMATION SIDING
0.47 658 1407 4 --------- HIDLENINVOiMATION
0.27 153 559 5 -------- CONSTANTSHID

0 0 5 -------- EXCEPTIONSHID
0.72 467 648 5 -------- VARIABLESHID
0.22 36 166 5 -------- TYPESHID
0.10 2 20 5 -------- SUBTYPESBID
0.00 0 14 5 -------- TASKSHIDI
0.00 0 130 4 --------- PRIVATEINFORMATION

0.00 0 130 5 -------- PRIVATE-TYPES
0 0 5 -------- LIMITEDPRIVATETYPES
0 0 5 -------- PRIVATE TYPE ANDPART
0 0 5 -------- PRIVATE -TYPEANDCONSTANTI

0.91 242 266 3 ----------- PROFILE
0.91 242 266 4 --------- LIMITED SIZE PROFILE

G - 8

ADAMAT Results Support Code

Date: 12-31-1991 page: 3

DUAO: [USBR.ADAMAT.UlTB_?ATA]SUPPORT.REPCOM; 1

Score Good Total ILevel --------Metric Nam~e

0 0 4 -------- SIMPLE BLOCKS

0.47 71 152 3 --------- COUPLING

0.68 52 76 4 -------- NO MULTIPLETYPE DECLARATIONS

0.25 19 76 4 -------- NO -VARIABLEDECLARATIONS_IN SPEC

0.80 7958 9910 2 ---------- SELF DESCRIPTIVENESS

0.71 4586 6478 3 --------- COMMENTS

0.78 2952 3774 4 --------- N COMMENTS

1.00 627 627 5 ------- NCS SPEC

1.00 380 380 6 ---- NCS PACKAGE SPEC

1.00 70 70 6 ---- NCSTASK SPEC

1.00 177 177 6 ---- NCSSUBPROG SPEC

0.99 674 679 5 ------- NCS BODY

1.00 190 190 6 ---- NCS PACKAGE BODY

1.00 70 70 6 -- NCS -TASK BODY

1.00 414 414 6 ---- NCS -SUBPROGBODY

0.00 0 5 6 ---- NCS SUBUNIT

0 0 6 ---- NCS BODY STUB

0.35 381 1083 5 ------- NCS STATEMENTS

0.11 3 27 6 ---- NCS EXIT

0.13 12 91 6 ---- NCS RETURN

0 0 6 ---- NCS GOTO

0 0 6 ---- NCS ABORT

0.83 112 135 6 ---- NCS DELAY

0 0 6 ---- NCS TERMINATE

0.06 28 488 6 ---- NCS WITH

0.66 226 342 6 ---- NCS USE

0.92 1270 1385 5 ------- NCS DECLARATIONS

0.82 9 11 6 ---- NCS PRAGMA

0.00 0 21 6 ---- NCS RECORD REPRESENTATION

0.54 52 96 6 ---- NCS ADDRESS CLAUSE

0.24 5 21 6 ---- NCS ALIGNMENT CLAUSE

0 0 6 ---- NCS LENGTH CLiUSE

1.00 559 559 6 ---- NCS CONSTANT DECL

1.00 645 645 6 ---- NCS VARIABLE-DECL

0.00 0 32 6 ---- NCS ENTRY DECL

0.60 1634 2704 4 -------- N COMMENTED

0.99 151 153 5 ------- NCO SPEC

0.99 75 76 6 ---- NCO PACKAGE SPEC

1.00 18 18 6 ---- NCO TASK SPEC
0.98 58 59 6 ---- NCO SUBPROG SPEC

0.96 184 191 5 ------- NCO BODY

0.97 37 38 6 ---- NCO PACKAGEBODY

1.00 14 14 6 ---- NCO TASK BODY

0.96 133 138 6 ---- NCO SUBPROG BODY

0.00 0 1 6 ---- NCO SUBUNIT
0 0 6 ---- NCO BODY STUB

0.08 91 1083 5 ------- NCO STATEMENTS

0.07 2 27 6 ---- NCO EXIT

0.07 6 91 6 ---- NCO RETURN

0 0 6 ---- NCO-GOTO

0 0 6 ---- NCO-ABORT

0.16 21 135 6 ---- NCO DELAY
0 0 6 ---- NCO TERMINATE

0.04 20 488 6 ---- NCO WITH

0.12 42 342 6 ---- NCO USE

0.95 1208 1277 5 ------- NCO-DECLARATIONS

G-9

I

ADAMAT Results Support Code

Date: 12-31-1991 page: 4

DUAO : [USER.ADAMAT.UBl_9ATA]SUPPORT.REP_COM;1
Score Good Total Level ------- Metric Name

0.64 7 11 6 ------ NCOPRAGMA

0.00 0 7 6 ---- NCO-RECORD_ REPRESENTATION

0.41 13 32 6 ---- NCO-ADDRESS CLAUSE

0.71 5 7 6 ---- NCO ALIGNMENT CLAUSE I
0 0 6 ---- NCO LENGTH CLAUSE

0.99 557 559 6 ---- NCO-CONSTANT_DECL

0.97 626 645 6 ---- NCO VARIABLEDECL
0.00 0 16 6 ---- NCO-ENTRY DECL I
0.98 3372 3432 3 ---------- IDENTIFIER

0.98 3372 3432 4 -------- NO PREDEFINEDWORDS

0.44 10003 22542 2 ----------- SIMPLICITY
0.82 1128 1372 3 ---------- CODING SIMPLICITY
0.83 1098 1319 4 -------- SIMPLEBOOLEANEXPRESSION

0.57 30 53 4 -------- EXPRESTODOBOOLEANASSIGN
0.30 2731 9048 3 ----- DESIGNSIMPLICIT=

0.13 218 1702 4 -------- CALLS TO PROCEDURES

0.39 35 89 4 -------- ARRAY TYPE EXPLICIT
0.11 20 178 4 -------- SUBTYPEEXPLICIT
0.00 0 8 4 -------- ARRAY RANGE TYPE EXPLICIT

0.35 2458 7071 4 -------- DECLARATIONS CONTAIN LITERALS
0.51 6144 12122 3 ---------- FLOW SIMPLICITY
0.23 353 1535 4 -------- BRANCHCONSTRUCTSI
0.81 112 138 4 -------- SINGLEEXITSUBPROGRAM

0.68 193 282 4 -------- FOR LOOPS

0.95 252 266 4 -------- LEVEL OFNESTINGBYMODULE
0.74 275 371 4 -------- LEVEL OF NESTING I
0.94 1436 1535 4 -------- STRUCTURED BRANCH CONSTRUCT

0.82 1253 1535 4 -------- NON BACKBRANCH_CONSTRUCT
0 0 4 -------- NO LABELS

0.20 318 1580 4 -------- DECISIONS
0 0 4 -------- GoTos

0.35 1535 4348 4 -------- BRANCHAND_NESTING

0.79 211 266 4 -------- CYCLOMATIC COMPLEXITY

0.77 206 266 4 --------- MULTIPLE COND CYCLOMATICCOMPLEXITY
0.49 3918 7985 2S-----------SYSTEM_CLARITY

0.49 3918 7985 3 ---------- STYLE
0.59 1797 3036 4 -------- EXPRESSION STYLE
0.89 1169 1319 5 -------- NON NEGATED BOOLEAN EXPRESSIONS

0.29 358 1242 5 ------- EXPFESSIONS-PARENTHESIZED
0.76 215 282 5 ------- NO WHILE LOOPS U
0.28 55 193 5 ------- FOR LOOPS WITH TYPE

0.91 1505 1646 4 -------- DECLARATION STYLE

0.09 13 151 5 ------- NO DEFAULT MODE PARAMETERS
o 0 5 ------- PRIVATE ACESSTYPES

0.99 1438 1441 5 ------- SINGLE OBJECT DECLARATION LISTS

1.00 54 54 5 ------- SINGLE IMPLICIT TYPE ARRAY

0 0 5 ------- NO INITIALIZATION -BY-NEW
0.32 401 1236 4 -------- NAMING STYLE
0.00 1 282 5 ------- STRUCTRES NAMED
0.00 1 282 6 ---- NAMED LOOPS

0 0 6 ---- NAMED-BLOCKS
0.50 281 562 5 ------- STRUCTURE ENDS WITHNAME

1.00 280 280 6 ---- MODULE END WITH NAME

0.00 1 282 6 ---- LOOP END WITH NAME
0 0 6 ---- BLOCK END WITH NAME

0.04 1 27 5 ------- NAMED EXITS

I

I

ADAMAT Results Support Code

Date: 12-31-1991 page: 5

DUA0:[USER.ADAMAT.UHI_ ATA]SUPPORT.REPCOM;l

Score Good Total |Level ------- Metric Name

0.32 118 365 5 ------- NAMED AGGREGATE

0.1.0 215 2067 4 -------- QUALIFICATIONSTYLE

0.00 0 365 5 ------- QUALIFIEDAGGREGATE

0.13 215 1702 5 ------- QUALIFIEDSUBPROGRAM

G-11

I
ADAMAT Results OAT & SeMc s

Date: 12-30-1991 page:

DUAO:[USER.ADAMAT.UHI_?ATA]GATANDSERVICES.REPCOM;1
Score Good Total |Level ------- Metric Name

0.57 9354 16455 1 -------------RELIABILITY
0.69 18312 26453 1------------MAINTAINABILITY

0.97 77892 80314 1-----------PORTABILITY

0.90 91112 101721 1 ------------ ALL CRITERIA
7256 2 ---------- SLOC

50999 3 ---------- PHYSICALLINES
11841 4 -------- PHYSICALADALINES
10574 5 ------- ADA UNCOMMENTED LINES I
1267 5 ------- ADACOMMENTED_LINES
1266 6 ---- COMMENTED LINES WITH TEXT

1 6 ---- COMMENTED-LINES -BLANK
32029 4 -------- PHYSICALCOMMENTLINES
31824 5 ------- COMMENT LINES WITH TEXT U

205 5 ------- COMMENT-LINES-BLANX

7129 4 -------- PHYSICAL_BLANK LINES
7256 3 ---------- LOGICAL LINES
7007 4 -------- STATEMENTS

4202 5 ------- EXECUTABLE STATEMENTS
2805 5 ------- DECLARATIVESTATEMENTS
228 4 -------- CONTEXT CLAUSES
140 5 ------- WITH CLAUSES

88 5 ------- USE CLAUSES I21 4 -------- PRAEA
0.65 2774 4276 2 ---------- ANOMALY MANAGEMENT

0.33 505 1525 3 ---------- PREVENTION
0.17 136 782 4 -------- APPLICATIVEDECLARATIONS
0.46 43 94 5 ------- APPLICATIVE DECL SPECIFICATION
0.14 93 688 5 ------- APPLICATIVEDECLBODY
0.44 281 642 4 -------- DEFAULTINITIALIZATION

0.57 29 51 5 ------- DEFAULT INIT SPECIFICATION
0.43 252 591 5 ------- DEFAULT INIT BODY I
0.76 13 17 4 -------- NORMAL LOOPS-

0 0 4 -------- CONSTRAINED NUMERICS

0.89 75 84 4 -------- CONSTRAINED-SUBTYPE
0 0 4 -------- CONSTRAINED VARIANT_RECORDS

0.86 2185 2545 3 ---------- DETECTION I
0 0 4 -------- SUPPRESS PRAGMA

0 5 ------- CONSTRAINT ERROR
0 5 ------- PROGRAMERROR
0 5 ------- STORAGE ERROR
0 5 ------- NUMERIC ERROR

0.86 2185 2545 4 -------- USERTYPES
0.89 494 553 5 ------- USER TYPES FOR PARAMETERS
0.85 869 1022 5 ------- USER'TYPESSPECIFICATION

0.85 822 970 5 ------- USER TYPES BODY
0.41 84 206 3 ---------- RECOVERY -
0.41 84 206 4 -------- USER EXCEPTIONS RAISED
0.99 70026 70992 2 ---------- INDEPENDENCE
0.98 24922 25428 3 ---------- IO INDEP

13 4 -------- NOMISSED CLOSE

0.98 16057 16464 4 -------- NO SYS DEP IO
0.99 8865 8951 4 ----------10NONMIX
0.99 6231 6275 3 ---------- TASK INDEP

0.99 6144 6166 4 -------- NO TASK STMT
0.80 87 109 4 -------- TASK_STMTNON MIX
0.98 22206 22602 3 ---------- MACH-INDEP G 1

I
G- 12m

I

U

ADAMAT Results GAT & Services

Date: 12-30-1991 page: 2

DUAO:[USER.ADAMAT.UH 1?ATA]GAT AND SERVICES.REP_COM;1

Score Good Total |Level ------- Metric Name

0.00 0 45 4 -------- MACHARITHINDEP
0.00 0 4 5 ----- PACKAGE ARITHINDEP

1 6 ---- NOMAX NT -

1 6 ---- NO mix INT

0 6 ---- NO MAX DIGITS

0 6- - NO MAX MANTISSA

0 6- NO FINEDELTA
2 6 ------ NOTICK
0 5 ------- NO INTEGER DECL

0 5 ------- NO SHORT INTEGER DECL

0 5 ------- NO LONG INTEGER-DECL
0 5 ------- NO-FLOAT_DECL

0 5 ------- NO SHORT FLOAT DECL

0 5 ------- NO -LONG FLOAT DECL

0 5 ------- NO NATURAL_DECL

41 5 ------- NO-POSITIVE DECL

0 0 5 ------- FIXED CLAUSE

0.83 358 432 4 -------- ACHRiPINDEP
1 5 ------- NO PRAGMAPACK

0.14 10 74 5 ------- NUMERIC CONSTANT DECL

1.00 3 3 5 ------- NUMERIC-TYPE DECLARATIONS

0.97 345 354 5 ------- CLAUSE REP INDEP
0.99 201 204 6 ---- NO LENGTHCLAUSE FOR SIZE

1.00 4 4 6 ---- NO-LENGTHCLAUSE FOR STORAGESIZE

0.96 70 73 6 ---- NO-ALIGNMENTCLAUSE FOR RECORD TYPES
0.96 70 73 6 ---- NO-COMPONENTCLAUSE FOR RECORD-TYPES
0.98 17296 17573 4 -------- MACHCONFIGINDEP

0.99 1103 1109 5 ------- NO ADDRESSCLAUSE_IN_DECL
0 5 ------- NO PRAG SYS PARAM

0.98 16193 16464 5 ------- NO REP ATTRIBUTE

1.00 4552 4552 4 -------- MACHCODEINDEP

1.00 4552 4552 5 ------- NO MACH CODE STMT

0.99 16667 16683 3 --------- SOFT INDEP -

1.00 16464 16464 4 -------- NO SYS DEP MOD
3 4 -------- NO IMPL DEP PRAGMAS

12 4 -------- NO-PRAGMA INTERFACE

0.99 203 204 4 -------- NON ACCESS TYPE

0 4 -------- NO IMPL DEP ATTRS

0.00 0 4 3 ---------- PHYS_LIMINDEP
4 4 -------- COMPILER-LIMIT

0.68 1056 1548 2 ---------- MODULARITY

0.62 765 1226 3 ---------- INFORMATION HIDING

0.71 757 1073 4 -------- HIDDEN INFORMATION
0.68 93 136 5 ------- CONSTANTSHID

0 0 5 ------- EXCEPTIONS HID

0.92 595 646 5 ------- vARIABLESHID

0.28 58 204 5 ------- TYPES HID

0.13 11 84 5 ------- SUBTYPESHID

0.00 0 3 5 ------- TASKS HID
0.05 8 153 4 -------- PRIVATE INFORMATION

0.01 2 146 5 ------- PRIVATE TYPES

0.50 1 2 5 ------- LIMITED PRIVATE TYPES
1.00 2 2 5 ------- RIVATE-TYPE ,ANDPART
1.00 3 3 5 ------- PRIVATETYPEANDCONSTANT

0.97 253 260 3 --------- PROFILE

0.97 253 260 4 -------- LIMITED SIZE PROFILE

3 G- 13

I

ADAMAT Results GAT & Services

Date: 12-30-1991 page: 3

DUAO:[USER.ADAMAT.UHI _ATA]GAT_ANDSERVICES.REP_COM;1

Score Good Total Level ------- Metric Name

0 0 4 -------- SIMPLE BLOCKS

0.61 38 62 3 --------- COUPLING

0.58 18 31 4 -------- NO MULTIPLE TYPE DECLARATIONS
0.65 20 31 4 -------- NO -VARIABLE-DECLARATIONFIN-SPEC

0.88 6810 7774 2 ---------- SELF DESCRIPTIVENESS

0.81 3560 4386 3 --------- COMMiNTS

0.91 2484 2722 4 -------- N COMUNTS

0.99 744 746 5 ------- NCS SPEC I
1.00 155 155 6 ---- NCS-PACKAGE SPEC

0.87 13 15 6 ---- NCS TASK SPEC

1.00 576 576 6 ---- NCS SUBPROG SPEC

0.98 709 727 5 ------- NCS-BODY -

1.00 100 100 6 ---- NCS PACKAGE BODY

1.00 15 15 6 ---- NCS TASK BODY

1.00 594 594 6 ---- NCS SUBPROG BODY

0.00 0 15 6 ---- NCS-SUBUNIT

0.00 0 3 6 ---- NCS BODY STUB
0.52 208 397 5 ------- NCS-STATiMENTS

0.00 0 20 6 ---- NCS EXIT

0.01 1 148 6 ---- NCSRETURN

0 0 6 ---- NCS GOTO

0 0 6 ---- NCS-ABORT
1 .00 1 1 6 ------ NCS-DELAY

0 0 6 ---- NCS TERMINATE

0.84 118 140 6 ---- NCS WITH
1.00 88 88 6 ---- NCS-USE I
0.97 823 852 5 ------- NCSDECLARATIONS

1.00 21 21 6 ---- NCS-PRAGMA

0.22 2 9 6 ---- NCS RECORD REPRESENTATION

0.89 16 18 6 ---- NCS ADDRESS CLAUSE

0.00 0 9 6 ---- NCS ALIGNMENT CLAUSE

0.44 4 9 6 ---- NCS LENGTH CLAUSE

1.00 134 134 6 ---- NCS CONSTAT DECL

1.00 640 640 6 ---- NCS VARIABLE DECL

0.50 6 12 6 ---- NCS ENTRY DECL
0.65 1076 1664 4 -------- N COMMENTED

0.71 160 226 5 ------- NCO SPEC

1.00 31 31 6 ---- NCO-PACKAGE-SPEC

1.00 3 3 6 ---- NCO TASK SPEC

0.66 126 192 6 ---- NCOSUBPROGSPEC I
0.96 215 225 5 ------- NCO BODY

1.00 20 20 6 ---- NCO PACKAGE BODY

1.00 3 3 6 ---- NCO-TASK BODY
0.97 192 198 6 --.... NCO-SUBPiOG BODY I
0.00 0 3 6 ---- NCO SUBUNIT

0.00 0 1 6 ---- NCOBODY STUB

0.14 54 397 5 ------- NCO STATiMENTS

0.00 0 20 6 ---- NCO EXIT

0.01 1 148 6 ---- NCORETURN U
0 0 6 ---- NCO-GOTO

0 0 6 ---- NCO7ABORT

1.00 1 1 6 ---- NCO DELAY

0 0 6 ---- NCO TERMINATE I
0.26 37 140 6 ---- NCO WITH

0.17 15 88 6 ---- NCO-USE

0.79 647 816 5 ------- NCO-DECLARATTONSGI
I

G- 14!

I

i

ADAMAT Results GAT &Services

Date: 12-30-1991 page: 4

DUAO:[USER.ADAMAT.UHI 9ATA]GATAND_SERVICES.REP_COM;i

l Score Good Total Level ------- Metric Name

0.19 4 21 6 ---- NCO_PRAGMA

0.67 2 3 6 ---- NCO-RECORD REPRESENTATION

0.67 4 6 6 ---- NCO ADDRESS CLAUSE

0-o.0o 0 3 6 -- NCO-ALIGWMERTCLAUSE
0.67 2 3 6 ------ NCO -LENGTHCLAUSE
0.96 128 134 6 ------ NCO -CONSTANTDECL

---0.78 501 640 6 ------ NCO VARIABLE DECL

1.00 6 6 6 --- NCO ENTRY DECL
0.96 3250 3388 3 --------- IDENTIFIER

0.96 3250 3388 4 -------- NO PREDEFINEDWORDS

0.54 6580 12179 2 ---------- SIMPLICITY

0.87 571 657 3--------- CODING SIMPLICITY

0.99 571 579 4 --------- SIMPLEBOOLEAN EXPRESSION
0.00 0 78 4 -------- EXPRES-TODOBOOLEAN ASSIGN

0.27 1053 3846 3 ---------- DESIGN SIMPLICITY

0.48 412 855 4 -------- CALLS TO PROCEDURES
0.93 39 42 4 -------- ARRAY TYPE EXPLICIT
0.56 84 151 4 -------- SUBTYPE EXPLICIT

0.52 17 31 4 -------- ARRAY RANGE TYPE EXPLICIT

0.18 501 2765 4 -------- DECLAiATIONS CONTAIN LITERALS

0.65 4956 7676 3 ---------- FLOW SIMPLICITY

0.54 566 1040 4 -------- BRANCH CONSTRUCTS

0.84 167 198 4 -------- SINGLE EXIT SUBPROGRAM

.0.51 47 93 4 -------- FOR LOOPS -

0.98 255 260 4 -------- LEVEL OF NESTING_ BY MODULE

0.90 311 345 4 -------- LEVEL OF NESTING

0.66 686 1040 4 -------- STRUCTURED BRANCH CONSTRUCT

0.91 947 1040 4 --------- NON BACK BRANCHCONSTRUCT

0 0 4 -------- NO LABELS

0.68 490 718 4 -------- DECISIONS

0 0 4 -------- GOTOS

0.43 1040 2422 4 -------- BRANCH AND NESTING

0.87 225 260 4 -------- CYCLOMATICCOMPLEXITY

0.85 222 260 4 -------- MULT:PLE COND CYCLOMATIC COMPLEXITY
0.78 3866 4952 2 ---------- SYSTEM_CLARITY
0.78 3866 4952 3 --------- STYLE

0.74 957 1295 4 -------- EXPRESSIONSTYLE

0.99 571 579 5 ------- ON NEGATED_BOOLEAN EXPRESSIONS

0.54 312 576 5 ------- EXPRESSIONS PARENThESIZED

0.69 64 93 5 ------- NO WHILE LOOPS

0.21 10 47 5 ------- FOR LOOPS WITH TYPE

0.97 2204 2264 4 -------- DECHARATION STYLE

0.90 456 509 5 ------- NO DEFAULTMODEPARAMETERS
0 0 5 -------- PRIVATE ACCESSTYPES

0.99 1745 1752 5 ------- SINGLE OBJECT DECLARATION LISTS

1.00 3 3 5 ------- SINGLE IMPLICiT TYPE ARRAY

U 0 5 ------- NO INITIALIZATIONBY-NEW

0.57 288 501 4 -------- NAMING STYLE

0.00 0 93 5 ------- STRUCTURESNAMED

0.00 0 93 6 ---- NAMED LOOPS

0 0 6 ---- NAMED-BLOCKS

0.72 254 351 5 ------- sTRUCTUREENDS WITH NAME

0.98 254 258 6 ---- MODULE END WITH NAME
0.00 0 93 6 ---- LOOP END WITH NAME

0 0 6 ---- BLOCK END WITH NAME

0.00 0 20 5 ------- NAMEDEXITS

Date: 12-30-1991 page: 5I DUAO:[USER.ADAMAT.UH1_DATA]GAT.ANDSERVICES.REP-COM;l

3 G- 15

ADAMAT Results
GAT & Services

Score Good Total ILevel ------- etric Name

0.92 34 37 5 ------- NAMED AGGREGATE
0.47 417 892 4 -------- QUALIFICATION-STYLE

0.00 0 37 5 ------- QUALIFIED AGGREGATE

0.49 417 855 5 ------- QUALIFIED-SUBPROGRAM

I
I
I
I
I
I
I
I
I
I
I
I

G- 16

I

U REFERENCES

3 1. Jon D. Valett and Frank E. McGarry, "A Summary of Software Measurement Experiences in the
Software Engineering Laboratory", The Journal of System and Software, Vol. 9, pages 137-148, 1989.

2. Frank McGarrv, Linda Esker, Kelvin Quimby, "Evolution of Ada Technology in a Production
Environment", Goddard Space Flight Center, Greenbelt, MD, 1988.

3. Frank McGarry, Sharon Waligora, "Experiments in SE Technology: Recent Studies in the SEL",
Software Engineering Laboratory, December 1991.

4. lIT Research Institute, Test Case Study: Estimating the Cost of Ada Software Development, April
1989.

5. Kenneth J. Lee, et. al., An OOD Paradigm for Flight Simulators, 2nd Edition, CMU/SEI-88-TR-30,3 September 1988.

6. IIT Research Institute, A Descriptive Evaluation of Software Sizing Models September 1987.

3 7. Boeing Aerospace Company, Specification of Software Quality Attributes Software Quality Evaluation
Handbook RADC-TR-85-37, Volume III (of three), February 1985.

8. J. D. Anderson, J. A. Perkins, "Experience Using an Automated Metrics Framework in the Review
of Ada Source for WIS", Proceeding of the 6th National Conference on Ada Technology 1988.

9. Ken Zwanzig, ed., Handbook for Estimating Using Function Points, GUIDE International, November,
1984.

H
.

I

3 H-1

